该文档涉及的组件

Shift (ShiftBatchOp)

Java 类名:com.alibaba.alink.operator.batch.timeseries.ShiftBatchOp

Python 类名:ShiftBatchOp

功能介绍

给定分组,对每一组的数据使用Shift进行时间序列预测,使用ShiftNum之前的数据作为预测结果。

使用方式

使用方式

参考文档 https://www.yuque.com/pinshu/alink_guide/xbp5ky

参数说明

名称 中文名称 描述 类型 是否必须? 取值范围 默认值
predictionCol 预测结果列名 预测结果列名 String
valueCol value列,类型为MTable value列,类型为MTable String 所选列类型为 [M_TABLE]
predictNum 预测条数 预测条数 Integer 1
predictionDetailCol 预测详细信息列名 预测详细信息列名 String
reservedCols 算法保留列名 算法保留列 String[] null
shiftNum shift个数 shift个数 Integer 7
numThreads 组件多线程线程个数 组件多线程线程个数 Integer 1

代码示例

Python 代码

from pyalink.alink import *

import pandas as pd

useLocalEnv(1)

import time, datetime
import numpy as np
import pandas as pd

data = pd.DataFrame([
			[1,  datetime.datetime.fromtimestamp(1), 10.0],
			[1,  datetime.datetime.fromtimestamp(2), 11.0],
			[1,  datetime.datetime.fromtimestamp(3), 12.0],
			[1,  datetime.datetime.fromtimestamp(4), 13.0],
			[1,  datetime.datetime.fromtimestamp(5), 14.0],
			[1,  datetime.datetime.fromtimestamp(6), 15.0],
			[1,  datetime.datetime.fromtimestamp(7), 16.0],
			[1,  datetime.datetime.fromtimestamp(8), 17.0],
			[1,  datetime.datetime.fromtimestamp(9), 18.0],
			[1,  datetime.datetime.fromtimestamp(10), 19.0]
])

source = dataframeToOperator(data, schemaStr='id int, ts timestamp, val double', op_type='batch')

source.link(
        GroupByBatchOp()
			.setGroupByPredicate("id")
			.setSelectClause("id, mtable_agg(ts, val) as data")
		).link(ShiftBatchOp()
					.setValueCol("data")
					.setShiftNum(7)
					.setPredictNum(12)
					.setPredictionCol("predict")
		).print()

Java 代码

package com.alibaba.alink.operator.batch.timeseries;

import org.apache.flink.types.Row;

import com.alibaba.alink.operator.batch.sql.GroupByBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;

import org.junit.Test;

import java.sql.Timestamp;
import java.util.Arrays;
import java.util.List;

public class ShiftBatchOpTest {

	@Test
	public void test() throws Exception {
		List <Row> mTableData = Arrays.asList(
			Row.of(1, new Timestamp(1), 10.0),
			Row.of(1, new Timestamp(2), 11.0),
			Row.of(1, new Timestamp(3), 12.0),
			Row.of(1, new Timestamp(4), 13.0),
			Row.of(1, new Timestamp(5), 14.0),
			Row.of(1, new Timestamp(6), 15.0),
			Row.of(1, new Timestamp(7), 16.0),
			Row.of(1, new Timestamp(8), 17.0),
			Row.of(1, new Timestamp(9), 18.0),
			Row.of(1, new Timestamp(10), 19.0)
		);

		MemSourceBatchOp source = new MemSourceBatchOp(mTableData, new String[] {"id", "ts", "val"});

		source
			.link(
				new GroupByBatchOp()
					.setGroupByPredicate("id")
					.setSelectClause("mtable_agg(ts, val) as data")
			)
			.link(
				new ShiftBatchOp()
					.setGroupCol("id")
					.setValueCol("data")
					.setShiftNum(7)
					.setPredictNum(12)
					.setPredictionCol("predict")
			)
			.print();
	}
}

运行结果

id data predict
1 {“data”:{“ts”:[“1970-01-01 08:00:00.001”,“1970-01-01 08:00:00.002”,“1970-01-01 08:00:00.003”,“1970-01-01 08:00:00.004”,“1970-01-01 08:00:00.005”,“1970-01-01 08:00:00.006”,“1970-01-01 08:00:00.007”,“1970-01-01 08:00:00.008”,“1970-01-01 08:00:00.009”,“1970-01-01 08:00:00.01”],“val”:[10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0]},“schema”:“ts TIMESTAMP,val DOUBLE”} {“data”:{“ts”:[“1970-01-01 08:00:00.011”,“1970-01-01 08:00:00.012”,“1970-01-01 08:00:00.013”,“1970-01-01 08:00:00.014”,“1970-01-01 08:00:00.015”,“1970-01-01 08:00:00.016”,“1970-01-01 08:00:00.017”,“1970-01-01 08:00:00.018”,“1970-01-01 08:00:00.019”,“1970-01-01 08:00:00.02”,“1970-01-01 08:00:00.021”,“1970-01-01 08:00:00.022”],“val”:[13.0,14.0,15.0,16.0,17.0,18.0,19.0,13.0,14.0,15.0,16.0,17.0]},“schema”:“ts TIMESTAMP,val DOUBLE”}