Java 类名:com.alibaba.alink.operator.batch.timeseries.ProphetBatchOp
Python 类名:ProphetBatchOp
对每一行的MTable数据, 进行Prophet时间序列预测,给出下一时间段的预测结果。
参考文档 https://www.yuque.com/pinshu/alink_guide/xbp5ky
Prophet是facebook开源的一个时间序列预测算法, github地址:https://github.com/facebook/prophet.
Prophet适用于具有明显的内在规律的数据, 例如:
第一步,将每组数据(时间列和数据列) 聚合成MTable.
GroupByBatchOp() .setGroupByPredicate("id") .setSelectClause("id, mtable_agg(ts, val) as data")
python
FlattenMTableBatchOp()
.setReservedCols(["id", "predict"])
.setSelectedCol("predict")
.setSchemaStr("ts timestamp, val double")
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
valueCol | value列,类型为MTable | value列,类型为MTable | String | ✓ | 所选列类型为 [M_TABLE, STRING] | |
cap | cap | cap | Double | null | ||
changePointPriorScale | changepoint_prior_scale | changepoint_prior_scale | Double | 0.05 | ||
changePointRange | change_point_range | change_point_range | Double | 0.8 | ||
changePoints | changepoints | changepoints | String | null | ||
dailySeasonality | daily_seasonality | daily_seasonality | String | “auto” | ||
floor | floor | floor | Double | null | ||
growth | growth | growth | String | “LINEAR”, “LOGISTIC”, “FLAT” | “LINEAR” | |
holidays | 节假日 | 节假日,格式是 playoff:2008-01-13,2009-01-03 superbowl: 2010-02-07,2014-02-02 | String | null | ||
holidaysPriorScale | holidays_prior_scale | holidays_prior_scale | Double | 10.0 | ||
includeHistory | include_history | include_history | Boolean | false | ||
intervalWidth | interval_width | interval_width | Double | 0.8 | ||
mcmcSamples | mcmc_samples | mcmc_samples | Integer | 0 | ||
nChangePoint | n_change_point | n_change_point | Integer | 25 | ||
predictNum | 预测条数 | 预测条数 | Integer | 1 | ||
predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | |||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
seasonalityMode | seasonality_mode | seasonality_mode | String | “MULTIPLICATIVE”, “ADDITIVE” | “ADDITIVE” | |
seasonalityPriorScale | seasonality_prior_scale | seasonality_prior_scale | Double | 10.0 | ||
stanInit | 初始值 | 初始值 | String | null | ||
uncertaintySamples | 用来计算指标的采样数目 | 用来计算指标的采样数目,设置成0,不计算指标。 | Integer | 1000 | ||
weeklySeasonality | weekly_seasonality | weekly_seasonality | String | “auto” | ||
yearlySeasonality | yearly_seasonality | yearly_seasonality | String | “auto” | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 |
from pyalink.alink import * import pandas as pd useLocalEnv(1) import time, datetime import numpy as np import pandas as pd downloader = AlinkGlobalConfiguration.getPluginDownloader() downloader.downloadPlugin('tf115_python_env_linux') data = pd.DataFrame([ [1, datetime.datetime.fromtimestamp(1000), 10.0], [1, datetime.datetime.fromtimestamp(2000), 11.0], [1, datetime.datetime.fromtimestamp(3000), 12.0], [1, datetime.datetime.fromtimestamp(4000), 13.0], [1, datetime.datetime.fromtimestamp(5000), 14.0], [1, datetime.datetime.fromtimestamp(6000), 15.0], [1, datetime.datetime.fromtimestamp(7000), 16.0], [1, datetime.datetime.fromtimestamp(8000), 17.0], [1, datetime.datetime.fromtimestamp(9000), 18.0], [1, datetime.datetime.fromtimestamp(10000), 19.0] ]) source = dataframeToOperator(data, schemaStr='id int, ts timestamp, val double', op_type='batch') source.link( GroupByBatchOp() .setGroupByPredicate("id") .setSelectClause("id, mtable_agg(ts, val) as data") ).link(ProphetBatchOp() .setValueCol("data") .setPredictNum(4) .setPredictionCol("pred") ).print()
package com.alibaba.alink.operator.batch.timeseries; import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.sql.GroupByBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.testutil.AlinkTestBase; import org.junit.Test; import java.sql.Timestamp; import java.util.Arrays; import java.util.List; public class ProphetBatchOpTest extends AlinkTestBase { @Test public void test() throws Exception { List <Row> mTableData = Arrays.asList( Row.of(1, new Timestamp(1000), 10.0), Row.of(1, new Timestamp(2000), 11.0), Row.of(1, new Timestamp(3000), 12.0), Row.of(1, new Timestamp(4000), 13.0), Row.of(1, new Timestamp(5000), 14.0), Row.of(1, new Timestamp(6000), 15.0), Row.of(1, new Timestamp(7000), 16.0), Row.of(1, new Timestamp(8000), 17.0), Row.of(1, new Timestamp(9000), 18.0), Row.of(1, new Timestamp(10000), 19.0) ); MemSourceBatchOp source = new MemSourceBatchOp(mTableData, new String[] {"id", "ts", "val"}); source.link( new GroupByBatchOp() .setGroupByPredicate("id") .setSelectClause("mtable_agg(ts, val) as data") ).link(new ProphetBatchOp() .setValueCol("data") .setPredictNum(4) .setPredictionCol("pred") ).print(); } }
id | data | predict |
---|---|---|
1 | {“data”:{“ts”:[“1970-01-01 08:00:00.001”,“1970-01-01 08:00:00.002”,“1970-01-01 08:00:00.003”,“1970-01-01 08:00:00.004”,“1970-01-01 08:00:00.005”,“1970-01-01 08:00:00.006”,“1970-01-01 08:00:00.007”,“1970-01-01 08:00:00.008”,“1970-01-01 08:00:00.009”,“1970-01-01 08:00:00.01”],“val”:[10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0]},“schema”:“ts TIMESTAMP,val DOUBLE”} | {“data”:{“ts”:[“1970-01-01 08:00:00.011”,“1970-01-01 08:00:00.012”,“1970-01-01 08:00:00.013”,“1970-01-01 08:00:00.014”,“1970-01-01 08:00:00.015”,“1970-01-01 08:00:00.016”,“1970-01-01 08:00:00.017”,“1970-01-01 08:00:00.018”,“1970-01-01 08:00:00.019”,“1970-01-01 08:00:00.02”,“1970-01-01 08:00:00.021”,“1970-01-01 08:00:00.022”],“val”:[20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0]},“schema”:“ts TIMESTAMP,val DOUBLE”} |
t