Java 类名:com.alibaba.alink.operator.stream.regression.GlmPredictStreamOp
Python 类名:GlmPredictStreamOp
GLM(Generalized Linear Model)又称为广义线性回归模型,是一种常用的统计模型,也是一种非线性模型族,许多常用的模型都属于广义线性回归。
它描述了响应和预测因子之间的非线性关系。广义线性回归模型具有线性回归模型的广义特征。响应变量遵循正态、二项式、泊松分布、伽马分布或逆高斯分布,链接函数f定义了μ和预测值的线性组合之间的关系。
GLM功能包括GLM训练,GLM预测(批和流)和GLM评估, 其中训练使用迭代最小二乘方法。
分布 | 连接函数 | 对应算法 |
---|---|---|
二项分布 | Logit | 逻辑回归 |
多项分布 | Logit | softmax |
高斯分布 | Identity | 线性回归 |
Poisson分布 | Log | Possion回归 |
[1] https://en.wikipedia.org/wiki/Generalized_linear_model
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
linkPredResultCol | 连接函数结果的列名 | 连接函数结果的列名 | String | null | ||
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 | ||
modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | ||
modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | ||
modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null |
from pyalink.alink import * import pandas as pd useLocalEnv(1) # data df = pd.DataFrame([ [1.6094,118.0000,69.0000,1.0000,2.0000], [2.3026,58.0000,35.0000,1.0000,2.0000], [2.7081,42.0000,26.0000,1.0000,2.0000], [2.9957,35.0000,21.0000,1.0000,2.0000], [3.4012,27.0000,18.0000,1.0000,2.0000], [3.6889,25.0000,16.0000,1.0000,2.0000], [4.0943,21.0000,13.0000,1.0000,2.0000], [4.3820,19.0000,12.0000,1.0000,2.0000], [4.6052,18.0000,12.0000,1.0000,2.0000] ]) source = BatchOperator.fromDataframe(df, schemaStr='u double, lot1 double, lot2 double, offset double, weights double') featureColNames = ["lot1", "lot2"] labelColName = "u" # train train = GlmTrainBatchOp()\ .setFamily("gamma")\ .setLink("Log")\ .setRegParam(0.3)\ .setMaxIter(5)\ .setFeatureCols(featureColNames)\ .setLabelCol(labelColName) source.link(train) # batch predict predict = GlmPredictBatchOp()\ .setPredictionCol("pred") predict.linkFrom(train, source) predict.print() # eval eval = GlmEvaluationBatchOp()\ .setFamily("gamma")\ .setLink("Log")\ .setRegParam(0.3)\ .setMaxIter(5)\ .setFeatureCols(featureColNames)\ .setLabelCol(labelColName) eval.linkFrom(train, source) eval.print() # stream predict source_stream = StreamOperator.fromDataframe(df, schemaStr='u double, lot1 double, lot2 double, offset double, weights double') predict_stream = GlmPredictStreamOp(train)\ .setPredictionCol("pred") predict_stream.linkFrom(source_stream) predict_stream.print() StreamOperator.execute()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.regression.GlmEvaluationBatchOp; import com.alibaba.alink.operator.batch.regression.GlmPredictBatchOp; import com.alibaba.alink.operator.batch.regression.GlmTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.regression.GlmPredictStreamOp; import com.alibaba.alink.operator.stream.source.MemSourceStreamOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class GlmPredictStreamOpTest { @Test public void testGlmPredictStreamOp() throws Exception { List <Row> df = Arrays.asList( Row.of(1.6094, 118.0000, 69.0000, 1.0000, 2.0000), Row.of(2.3026, 58.0000, 35.0000, 1.0000, 2.0000), Row.of(2.7081, 42.0000, 26.0000, 1.0000, 2.0000), Row.of(2.9957, 35.0000, 21.0000, 1.0000, 2.0000), Row.of(3.4012, 27.0000, 18.0000, 1.0000, 2.0000), Row.of(3.6889, 25.0000, 16.0000, 1.0000, 2.0000), Row.of(4.0943, 21.0000, 13.0000, 1.0000, 2.0000), Row.of(4.3820, 19.0000, 12.0000, 1.0000, 2.0000), Row.of(4.6052, 18.0000, 12.0000, 1.0000, 2.0000) ); BatchOperator <?> source = new MemSourceBatchOp(df, "u double, lot1 double, lot2 double, offset double, weights double"); String[] featureColNames = new String[] {"lot1", "lot2"}; String labelColName = "u"; BatchOperator <?> train = new GlmTrainBatchOp() .setFamily("gamma") .setLink("Log") .setRegParam(0.3) .setMaxIter(5) .setFeatureCols(featureColNames) .setLabelCol(labelColName); source.link(train); BatchOperator <?> predict = new GlmPredictBatchOp() .setPredictionCol("pred"); predict.linkFrom(train, source); predict.print(); BatchOperator <?> eval = new GlmEvaluationBatchOp() .setFamily("gamma") .setLink("Log") .setRegParam(0.3) .setMaxIter(5) .setFeatureCols(featureColNames) .setLabelCol(labelColName); eval.linkFrom(train, source); eval.print(); StreamOperator <?> source_stream = new MemSourceStreamOp(df, "u double, lot1 double, lot2 double, offset double, weights double"); StreamOperator <?> predict_stream = new GlmPredictStreamOp(train) .setPredictionCol("pred"); predict_stream.linkFrom(source_stream); predict_stream.print(); StreamOperator.execute(); } }
u | lot1 | lot2 | offset | weights | pred |
---|---|---|---|---|---|
1.6094 | 118.0000 | 69.0000 | 1.0000 | 2.0000 | 1.4601 |
2.3026 | 58.0000 | 35.0000 | 1.0000 | 2.0000 | 2.6396 |
2.7081 | 42.0000 | 26.0000 | 1.0000 | 2.0000 | 3.0847 |
2.9957 | 35.0000 | 21.0000 | 1.0000 | 2.0000 | 3.4135 |
3.4012 | 27.0000 | 18.0000 | 1.0000 | 2.0000 | 3.5215 |
3.6889 | 25.0000 | 16.0000 | 1.0000 | 2.0000 | 3.6901 |
4.0943 | 21.0000 | 13.0000 | 1.0000 | 2.0000 | 3.9275 |
4.3820 | 19.0000 | 12.0000 | 1.0000 | 2.0000 | 3.9891 |
4.6052 | 18.0000 | 12.0000 | 1.0000 | 2.0000 | 3.9581 |
{“rank”:3,“degreeOfFreedom”:6,“residualDegreeOfFreeDom”:6,“residualDegreeOfFreedomNull”:8,“aic”:9702.088569686532,“dispersion”:0.016006720896643168,“deviance”:0.0963859019919082,“nullDeviance”:0.8493577599031797,“coefficients”:[0.007797743508544201,-0.031175844426488047],“intercept”:1.609524324733497,“coefficientStandardErrors”:[0.030385113783605693,0.05301723001060941,0.10937960484661188],“tValues”:[0.25663038697427815,-0.5880323136506637,14.715031444761644],“pValues”:[0.8060371545112608,0.5779564640150403,6.188226474801439E-6]}
u | lot1 | lot2 | offset | weights | pred |
---|---|---|---|---|---|
2.7081 | 42.0000 | 26.0000 | 1.0000 | 2.0000 | 3.0847 |
2.9957 | 35.0000 | 21.0000 | 1.0000 | 2.0000 | 3.4135 |
1.6094 | 118.0000 | 69.0000 | 1.0000 | 2.0000 | 1.4601 |
4.0943 | 21.0000 | 13.0000 | 1.0000 | 2.0000 | 3.9275 |
4.3820 | 19.0000 | 12.0000 | 1.0000 | 2.0000 | 3.9891 |
3.4012 | 27.0000 | 18.0000 | 1.0000 | 2.0000 | 3.5215 |
2.3026 | 58.0000 | 35.0000 | 1.0000 | 2.0000 | 2.6396 |
3.6889 | 25.0000 | 16.0000 | 1.0000 | 2.0000 | 3.6901 |
4.6052 | 18.0000 | 12.0000 | 1.0000 | 2.0000 | 3.9581 |