Java 类名:com.alibaba.alink.operator.stream.regression.KerasSequentialRegressorPredictStreamOp
Python 类名:KerasSequentialRegressorPredictStreamOp
与 KerasSequential 回归训练组件对应的流预测组件。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
inferBatchSize | 推理数据批大小 | 推理数据批大小 | Integer | 256 | ||
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | ||
modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | ||
modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null |
** 以下代码仅用于示意,可能需要修改部分代码或者配置环境后才能正常运行!**
source = CsvSourceBatchOp() \ .setFilePath("https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/random_tensor.csv") \ .setSchemaStr("tensor string, label double") source = ToTensorBatchOp() \ .setSelectedCol("tensor") \ .setTensorDataType("DOUBLE") \ .setTensorShape([200, 3]) \ .linkFrom(source) streamSource = CsvSourceStreamOp() \ .setFilePath("https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/random_tensor.csv") \ .setSchemaStr("tensor string, label double") trainBatchOp = KerasSequentialRegressorTrainBatchOp() \ .setTensorCol("tensor") \ .setLabelCol("label") \ .setLayers([ "Conv1D(256, 5, padding='same', activation='relu')", "Conv1D(128, 5, padding='same', activation='relu')", "Dropout(0.1)", "MaxPooling1D(pool_size=8)", "Conv1D(128, 5, padding='same', activation='relu')", "Conv1D(128, 5, padding='same', activation='relu')", "Flatten()" ]) \ .setOptimizer("Adam()") \ .setNumEpochs(1) \ .linkFrom(source) predictStreamOp = KerasSequentialRegressorPredictStreamOp(trainBatchOp) \ .setPredictionCol("pred") \ .setReservedCols(["label"]) \ .linkFrom(streamSource) predictStreamOp.print() StreamOperator.execute()
import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.dataproc.ToTensorBatchOp; import com.alibaba.alink.operator.batch.regression.KerasSequentialRegressorTrainBatchOp; import com.alibaba.alink.operator.batch.source.CsvSourceBatchOp; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.regression.KerasSequentialRegressorPredictStreamOp; import com.alibaba.alink.operator.stream.source.CsvSourceStreamOp; import org.junit.Test; public class KerasSequentialRegressorPredictStreamOpTest { @Test public void testKerasSequentialRegressorPredictStreamOp() throws Exception { BatchOperator <?> source = new CsvSourceBatchOp() .setFilePath("https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/random_tensor.csv") .setSchemaStr("tensor string, label double"); source = new ToTensorBatchOp() .setSelectedCol("tensor") .setTensorDataType("DOUBLE") .setTensorShape(200, 3) .linkFrom(source); StreamOperator <?> streamSource = new CsvSourceStreamOp() .setFilePath("https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/random_tensor.csv") .setSchemaStr("tensor string, label double"); KerasSequentialRegressorTrainBatchOp trainBatchOp = new KerasSequentialRegressorTrainBatchOp() .setTensorCol("tensor") .setLabelCol("label") .setLayers(new String[] { "Conv1D(256, 5, padding='same', activation='relu')", "Conv1D(128, 5, padding='same', activation='relu')", "Dropout(0.1)", "MaxPooling1D(pool_size=8)", "Conv1D(128, 5, padding='same', activation='relu')", "Conv1D(128, 5, padding='same', activation='relu')", "Flatten()" }) .setOptimizer("Adam()") .setNumEpochs(1) .linkFrom(source); KerasSequentialRegressorPredictStreamOp predictStreamOp = new KerasSequentialRegressorPredictStreamOp(trainBatchOp) .setPredictionCol("pred") .setReservedCols("label") .linkFrom(streamSource); predictStreamOp.print(); StreamOperator.execute(); } }
label | pred | pred_detail |
---|---|---|
0 | 0 | {“0”:0.636155836712713,“1”:0.36384416328728697} |
1 | 0 | {“0”:0.6334926095655181,“1”:0.3665073904344819} |
1 | 0 | {“0”:0.6381823204965642,“1”:0.3618176795034358} |
1 | 0 | {“0”:0.6376416296248051,“1”:0.362358370375195} |
1 | 0 | {“0”:0.6345856985385896,“1”:0.36541430146141035} |
1 | 0 | {“0”:0.6357593109428179,“1”:0.364240689057182} |
0 | 0 | {“0”:0.6404387449594703,“1”:0.3595612550405296} |
1 | 0 | {“0”:0.6372702905549685,“1”:0.36272970944503136} |
0 | 0 | {“0”:0.635502012172225,“1”:0.36449798782777487} |
0 | 0 | {“0”:0.6262401788033837,“1”:0.37375982119661644} |