Java 类名:com.alibaba.alink.operator.batch.classification.KerasSequentialClassifierPredictBatchOp
Python 类名:KerasSequentialClassifierPredictBatchOp
与 KerasSequential分类训练组件对应的预测组件。
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | 
|---|---|---|---|---|---|---|
| predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
| inferBatchSize | 推理数据批大小 | 推理数据批大小 | Integer | 256 | ||
| predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | |||
| reservedCols | 算法保留列名 | 算法保留列 | String[] | null | 
** 以下代码仅用于示意,可能需要修改部分代码或者配置环境后才能正常运行!**
source = CsvSourceBatchOp() \
    .setFilePath("https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/random_tensor.csv") \
    .setSchemaStr("tensor string, label int")
source = ToTensorBatchOp() \
    .setSelectedCol("tensor") \
    .setTensorDataType("DOUBLE") \
    .setTensorShape([200, 3]) \
    .linkFrom(source)
trainBatchOp = KerasSequentialClassifierTrainBatchOp() \
    .setTensorCol("tensor") \
    .setLabelCol("label") \
    .setLayers([
        "Conv1D(256, 5, padding='same', activation='relu')",
        "Conv1D(128, 5, padding='same', activation='relu')",
        "Dropout(0.1)",
        "MaxPooling1D(pool_size=8)",
        "Conv1D(128, 5, padding='same', activation='relu')",
        "Conv1D(128, 5, padding='same', activation='relu')",
        "Flatten()"
    ]) \
    .setOptimizer("Adam()") \
    .setNumEpochs(1) \
    .linkFrom(source)
predictBatchOp = KerasSequentialClassifierPredictBatchOp() \
    .setPredictionCol("pred") \
    .setPredictionDetailCol("pred_detail") \
    .setReservedCols(["label"]) \
    .linkFrom(trainBatchOp, source)
predictBatchOp.lazyPrint(10)
BatchOperator.execute()
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.classification.KerasSequentialClassifierPredictBatchOp;
import com.alibaba.alink.operator.batch.classification.KerasSequentialClassifierTrainBatchOp;
import com.alibaba.alink.operator.batch.dataproc.ToTensorBatchOp;
import com.alibaba.alink.operator.batch.source.CsvSourceBatchOp;
import org.junit.Test;
public class KerasSequentialClassifierPredictBatchOpTest {
	@Test
	public void testKerasSequentialClassifierPredictBatchOp() throws Exception {
		BatchOperator<?> source = new CsvSourceBatchOp()
			.setFilePath("https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/random_tensor.csv")
			.setSchemaStr("tensor string, label int");
		source = new ToTensorBatchOp()
			.setSelectedCol("tensor")
			.setTensorDataType("DOUBLE")
			.setTensorShape(200, 3)
			.linkFrom(source);
		KerasSequentialClassifierTrainBatchOp trainBatchOp = new KerasSequentialClassifierTrainBatchOp()
			.setTensorCol("tensor")
			.setLabelCol("label")
			.setLayers(new String[] {
				"Conv1D(256, 5, padding='same', activation='relu')",
				"Conv1D(128, 5, padding='same', activation='relu')",
				"Dropout(0.1)",
				"MaxPooling1D(pool_size=8)",
				"Conv1D(128, 5, padding='same', activation='relu')",
				"Conv1D(128, 5, padding='same', activation='relu')",
				"Flatten()"
			})
			.setOptimizer("Adam()")
			.setNumEpochs(1)
			.linkFrom(source);
		KerasSequentialClassifierPredictBatchOp predictBatchOp = new KerasSequentialClassifierPredictBatchOp()
			.setPredictionCol("pred")
			.setPredictionDetailCol("pred_detail")
			.setReservedCols("label")
			.linkFrom(trainBatchOp, source);
		predictBatchOp.lazyPrint(10);
		BatchOperator.execute();
	}
}
| label | pred | pred_detail | 
|---|---|---|
| 0 | 0 | {“0”:0.636155836712713,“1”:0.36384416328728697} | 
| 1 | 0 | {“0”:0.6334926095655181,“1”:0.3665073904344819} | 
| 1 | 0 | {“0”:0.6381823204965642,“1”:0.3618176795034358} | 
| 1 | 0 | {“0”:0.6376416296248051,“1”:0.362358370375195} | 
| 1 | 0 | {“0”:0.6345856985385896,“1”:0.36541430146141035} | 
| 1 | 0 | {“0”:0.6357593109428179,“1”:0.364240689057182} | 
| 0 | 0 | {“0”:0.6404387449594703,“1”:0.3595612550405296} | 
| 1 | 0 | {“0”:0.6372702905549685,“1”:0.36272970944503136} | 
| 0 | 0 | {“0”:0.635502012172225,“1”:0.36449798782777487} | 
| 0 | 0 | {“0”:0.6262401788033837,“1”:0.37375982119661644} |