Java 类名:com.alibaba.alink.operator.batch.classification.KerasSequentialClassifierPredictBatchOp
Python 类名:KerasSequentialClassifierPredictBatchOp
与 KerasSequential分类训练组件对应的预测组件。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
inferBatchSize | 推理数据批大小 | 推理数据批大小 | Integer | 256 | ||
predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | |||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null |
** 以下代码仅用于示意,可能需要修改部分代码或者配置环境后才能正常运行!**
source = CsvSourceBatchOp() \ .setFilePath("https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/random_tensor.csv") \ .setSchemaStr("tensor string, label int") source = ToTensorBatchOp() \ .setSelectedCol("tensor") \ .setTensorDataType("DOUBLE") \ .setTensorShape([200, 3]) \ .linkFrom(source) trainBatchOp = KerasSequentialClassifierTrainBatchOp() \ .setTensorCol("tensor") \ .setLabelCol("label") \ .setLayers([ "Conv1D(256, 5, padding='same', activation='relu')", "Conv1D(128, 5, padding='same', activation='relu')", "Dropout(0.1)", "MaxPooling1D(pool_size=8)", "Conv1D(128, 5, padding='same', activation='relu')", "Conv1D(128, 5, padding='same', activation='relu')", "Flatten()" ]) \ .setOptimizer("Adam()") \ .setNumEpochs(1) \ .linkFrom(source) predictBatchOp = KerasSequentialClassifierPredictBatchOp() \ .setPredictionCol("pred") \ .setPredictionDetailCol("pred_detail") \ .setReservedCols(["label"]) \ .linkFrom(trainBatchOp, source) predictBatchOp.lazyPrint(10) BatchOperator.execute()
import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.classification.KerasSequentialClassifierPredictBatchOp; import com.alibaba.alink.operator.batch.classification.KerasSequentialClassifierTrainBatchOp; import com.alibaba.alink.operator.batch.dataproc.ToTensorBatchOp; import com.alibaba.alink.operator.batch.source.CsvSourceBatchOp; import org.junit.Test; public class KerasSequentialClassifierPredictBatchOpTest { @Test public void testKerasSequentialClassifierPredictBatchOp() throws Exception { BatchOperator<?> source = new CsvSourceBatchOp() .setFilePath("https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/random_tensor.csv") .setSchemaStr("tensor string, label int"); source = new ToTensorBatchOp() .setSelectedCol("tensor") .setTensorDataType("DOUBLE") .setTensorShape(200, 3) .linkFrom(source); KerasSequentialClassifierTrainBatchOp trainBatchOp = new KerasSequentialClassifierTrainBatchOp() .setTensorCol("tensor") .setLabelCol("label") .setLayers(new String[] { "Conv1D(256, 5, padding='same', activation='relu')", "Conv1D(128, 5, padding='same', activation='relu')", "Dropout(0.1)", "MaxPooling1D(pool_size=8)", "Conv1D(128, 5, padding='same', activation='relu')", "Conv1D(128, 5, padding='same', activation='relu')", "Flatten()" }) .setOptimizer("Adam()") .setNumEpochs(1) .linkFrom(source); KerasSequentialClassifierPredictBatchOp predictBatchOp = new KerasSequentialClassifierPredictBatchOp() .setPredictionCol("pred") .setPredictionDetailCol("pred_detail") .setReservedCols("label") .linkFrom(trainBatchOp, source); predictBatchOp.lazyPrint(10); BatchOperator.execute(); } }
label | pred | pred_detail |
---|---|---|
0 | 0 | {“0”:0.636155836712713,“1”:0.36384416328728697} |
1 | 0 | {“0”:0.6334926095655181,“1”:0.3665073904344819} |
1 | 0 | {“0”:0.6381823204965642,“1”:0.3618176795034358} |
1 | 0 | {“0”:0.6376416296248051,“1”:0.362358370375195} |
1 | 0 | {“0”:0.6345856985385896,“1”:0.36541430146141035} |
1 | 0 | {“0”:0.6357593109428179,“1”:0.364240689057182} |
0 | 0 | {“0”:0.6404387449594703,“1”:0.3595612550405296} |
1 | 0 | {“0”:0.6372702905549685,“1”:0.36272970944503136} |
0 | 0 | {“0”:0.635502012172225,“1”:0.36449798782777487} |
0 | 0 | {“0”:0.6262401788033837,“1”:0.37375982119661644} |