Java 类名:com.alibaba.alink.operator.batch.regression.BertTextPairRegressorPredictBatchOp
Python 类名:BertTextPairRegressorPredictBatchOp
与 BERT 文本对回归训练组件对应的预测组件。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
inferBatchSize | 推理数据批大小 | 推理数据批大小 | Integer | 256 | ||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null |
** 以下代码仅用于示意,可能需要修改部分代码或者配置环境后才能正常运行!**
url = "http://alink-algo-packages.oss-cn-hangzhou-zmf.aliyuncs.com/data/MRPC/train.tsv" schemaStr = "f_quality double, f_id_1 string, f_id_2 string, f_string_1 string, f_string_2 string" data = CsvSourceBatchOp() \ .setFilePath(url) \ .setSchemaStr(schemaStr) \ .setFieldDelimiter("\t") \ .setIgnoreFirstLine(True) \ .setQuoteChar(None) data = data.firstN(300) model = CsvSourceBatchOp() \ .setFilePath("http://alink-test.oss-cn-beijing.aliyuncs.com/jiqi-temp/tf_ut_files/bert_text_pair_regressor_model.csv") \ .setSchemaStr("model_id bigint, model_info string, label_value double") predict = BertTextPairRegressorPredictBatchOp() \ .setPredictionCol("pred") \ .setReservedCols(["f_quality"]) \ .linkFrom(model, data) predict.print()
import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.regression.BertTextPairRegressorPredictBatchOp; import com.alibaba.alink.operator.batch.source.CsvSourceBatchOp; import org.junit.Test; public class BertTextPairRegressorPredictBatchOpTest { @Test public void test() throws Exception { String url = "http://alink-algo-packages.oss-cn-hangzhou-zmf.aliyuncs.com/data/MRPC/train.tsv"; String schemaStr = "f_quality double, f_id_1 string, f_id_2 string, f_string_1 string, f_string_2 string"; BatchOperator <?> data = new CsvSourceBatchOp() .setFilePath(url) .setSchemaStr(schemaStr) .setFieldDelimiter("\t") .setIgnoreFirstLine(true) .setQuoteChar(null); data = data.firstN(300); BatchOperator <?> model = new CsvSourceBatchOp() .setFilePath("http://alink-test.oss-cn-beijing.aliyuncs.com/jiqi-temp/tf_ut_files/bert_text_pair_regressor_model.csv") .setSchemaStr("model_id bigint, model_info string, label_value double"); BertTextPairRegressorPredictBatchOp predict = new BertTextPairRegressorPredictBatchOp() .setPredictionCol("pred") .setReservedCols("f_quality") .linkFrom(model, data); predict.print(); } }
f_quality | pred |
---|---|
0.0 | 1.404307 |
0.0 | 1.404307 |
1.0 | 1.404307 |
0.0 | 1.404307 |
1.0 | 1.404307 |
… | … |
0.0 | 1.404392 |
1.0 | 1.404392 |
0.0 | 1.404392 |
1.0 | 1.404392 |
1.0 | 1.404392 |