Java 类名:com.alibaba.alink.operator.batch.regression.CartRegPredictBatchOp
Python 类名:CartRegPredictBatchOp
cart回归是一种常用的树模型
cart回归组件支持稠密数据格式
支持带样本权重的训练
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | 
|---|---|---|---|---|---|---|
| predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
| modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
| reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 | 
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
    [1.0, "A", 0, 0, 0],
    [2.0, "B", 1, 1, 0],
    [3.0, "C", 2, 2, 1],
    [4.0, "D", 3, 3, 1]
])
batchSource = BatchOperator.fromDataframe(
    df, schemaStr='f0 double, f1 string, f2 int, f3 int, label int')
streamSource = StreamOperator.fromDataframe(
    df, schemaStr='f0 double, f1 string, f2 int, f3 int, label int')
trainOp = CartRegTrainBatchOp()\
    .setLabelCol('label')\
    .setFeatureCols(['f0', 'f1', 'f2', 'f3'])\
    .linkFrom(batchSource)
predictBatchOp = CartRegPredictBatchOp()\
    .setPredictionCol('pred')
predictStreamOp = CartRegPredictStreamOp(trainOp)\
    .setPredictionCol('pred')
predictBatchOp.linkFrom(trainOp, batchSource).print()
predictStreamOp.linkFrom(streamSource).print()
StreamOperator.execute()
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.regression.CartRegPredictBatchOp;
import com.alibaba.alink.operator.batch.regression.CartRegTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.stream.StreamOperator;
import com.alibaba.alink.operator.stream.regression.CartRegPredictStreamOp;
import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class CartRegPredictBatchOpTest {
	@Test
	public void testCartRegPredictBatchOp() throws Exception {
		List <Row> df = Arrays.asList(
			Row.of(1.0, "A", 0, 0, 0),
			Row.of(2.0, "B", 1, 1, 0),
			Row.of(3.0, "C", 2, 2, 1),
			Row.of(4.0, "D", 3, 3, 1)
		);
		BatchOperator <?> batchSource = new MemSourceBatchOp(df, "f0 double, f1 string, f2 int, f3 int, label int");
		StreamOperator <?> streamSource = new MemSourceStreamOp(
			df, "f0 double, f1 string, f2 int, f3 int, label int");
		BatchOperator <?> trainOp = new CartRegTrainBatchOp()
			.setLabelCol("label")
			.setFeatureCols("f0", "f1", "f2", "f3")
			.linkFrom(batchSource);
		BatchOperator <?> predictBatchOp = new CartRegPredictBatchOp()
			.setPredictionCol("pred");
		StreamOperator <?> predictStreamOp = new CartRegPredictStreamOp(trainOp)
			.setPredictionCol("pred");
		predictBatchOp.linkFrom(trainOp, batchSource).print();
		predictStreamOp.linkFrom(streamSource).print();
		StreamOperator.execute();
	}
}
| f0 | f1 | f2 | f3 | label | pred | 
|---|---|---|---|---|---|
| 1.0000 | A | 0 | 0 | 0 | 0.0000 | 
| 2.0000 | B | 1 | 1 | 0 | 0.0000 | 
| 3.0000 | C | 2 | 2 | 1 | 1.0000 | 
| 4.0000 | D | 3 | 3 | 1 | 1.0000 | 
| f0 | f1 | f2 | f3 | label | pred | 
|---|---|---|---|---|---|
| 3.0000 | C | 2 | 2 | 1 | 1.0000 | 
| 1.0000 | A | 0 | 0 | 0 | 0.0000 | 
| 2.0000 | B | 1 | 1 | 0 | 0.0000 | 
| 4.0000 | D | 3 | 3 | 1 | 1.0000 |