Java 类名:com.alibaba.alink.operator.batch.regression.GbdtRegTrainBatchOp
Python 类名:GbdtRegTrainBatchOp
gbdt(Gradient Boosting Decision Trees)回归,是经典的基于boosting的有监督学习模型,可以用来解决回归问题
支持连续特征和离散特征
支持数据采样和特征采样
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
labelCol | 标签列名 | 输入表中的标签列名 | String | ✓ | ||
categoricalCols | 离散特征列名 | 离散特征列名 | String[] | 所选列类型为 [BOOLEAN, DATE, DOUBLE, FLOAT, INTEGER, LONG, SHORT, STRING, TIME, TIMESTAMP] | ||
criteria | 树分裂的策略 | 树分裂的策略,可以为PAI, XGBOOST | String | “PAI”, “XGBOOST” | “PAI” | |
featureCols | 特征列名数组 | 特征列名数组,默认全选 | String[] | 所选列类型为 [BOOLEAN, DATE, DOUBLE, FLOAT, INTEGER, LONG, SHORT, STRING, TIME, TIMESTAMP] | null | |
featureImportanceType | 特征重要性类型 | 特征重要性类型(默认为GAIN) | String | “WEIGHT”, “GAIN”, “COVER” | “GAIN” | |
featureSubsamplingRatio | 每棵树特征采样的比例 | 每棵树特征采样的比例,范围为(0, 1]。 | Double | 1.0 | ||
gamma | xgboost中的l2正则项 | xgboost中的l2正则项 | Double | 0.0 | ||
lambda | xgboost中的l1正则项 | xgboost中的l1正则项 | Double | 0.0 | ||
learningRate | 学习率 | 学习率(默认为0.3) | Double | 0.3 | ||
maxBins | 连续特征进行分箱的最大个数 | 连续特征进行分箱的最大个数。 | Integer | 128 | ||
maxDepth | 树的深度限制 | 树的深度限制 | Integer | 6 | ||
maxLeaves | 叶节点的最多个数 | 叶节点的最多个数 | Integer | 2147483647 | ||
minInfoGain | 分裂的最小增益 | 分裂的最小增益 | Double | 0.0 | ||
minSampleRatioPerChild | 子节点占父节点的最小样本比例 | 子节点占父节点的最小样本比例 | Double | 0.0 | ||
minSamplesPerLeaf | 叶节点的最小样本个数 | 叶节点的最小样本个数 | Integer | 100 | ||
minSumHessianPerLeaf | 叶子节点最小Hessian值 | 叶子节点最小Hessian值(默认为0) | Double | 0.0 | ||
newtonStep | 是否使用二阶梯度 | 是否使用二阶梯度 | Boolean | true | ||
numTrees | 模型中树的棵数 | 模型中树的棵数 | Integer | 100 | ||
subsamplingRatio | 每棵树的样本采样比例或采样行数 | 每棵树的样本采样比例或采样行数,行数上限100w行 | Double | 1.0 | ||
vectorCol | 向量列名 | 向量列对应的列名,默认值是null | String | 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] | null | |
weightCol | 权重列名 | 权重列对应的列名 | String | 所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT] | null |
对于训练效果来说,比较重要的参数是 树的棵树+学习率、叶子节点最小样本数、单颗树最大深度、特征采样比例。
单个离散特征的取值种类数不能超过256,否则会出错。
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ [1.0, "A", 0, 0, 0], [2.0, "B", 1, 1, 0], [3.0, "C", 2, 2, 1], [4.0, "D", 3, 3, 1] ]) batchSource = BatchOperator.fromDataframe( df, schemaStr='f0 double, f1 string, f2 int, f3 int, label int') streamSource = StreamOperator.fromDataframe( df, schemaStr='f0 double, f1 string, f2 int, f3 int, label int') trainOp = GbdtRegTrainBatchOp()\ .setLearningRate(1.0)\ .setNumTrees(3)\ .setMinSamplesPerLeaf(1)\ .setLabelCol('label')\ .setFeatureCols(['f0', 'f1', 'f2', 'f3'])\ .linkFrom(batchSource) predictBatchOp = GbdtRegPredictBatchOp()\ .setPredictionCol('pred') predictStreamOp = GbdtRegPredictStreamOp(trainOp)\ .setPredictionCol('pred') predictBatchOp.linkFrom(trainOp, batchSource).print() predictStreamOp.linkFrom(streamSource).print() StreamOperator.execute()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.regression.GbdtRegPredictBatchOp; import com.alibaba.alink.operator.batch.regression.GbdtRegTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.regression.GbdtRegPredictStreamOp; import com.alibaba.alink.operator.stream.source.MemSourceStreamOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class GbdtRegTrainBatchOpTest { @Test public void testGbdtRegTrainBatchOp() throws Exception { List <Row> df = Arrays.asList( Row.of(1.0, "A", 0, 0, 0), Row.of(2.0, "B", 1, 1, 0), Row.of(3.0, "C", 2, 2, 1), Row.of(4.0, "D", 3, 3, 1) ); BatchOperator <?> batchSource = new MemSourceBatchOp( df, "f0 double, f1 string, f2 int, f3 int, label int"); StreamOperator <?> streamSource = new MemSourceStreamOp( df, "f0 double, f1 string, f2 int, f3 int, label int"); BatchOperator <?> trainOp = new GbdtRegTrainBatchOp() .setLearningRate(1.0) .setNumTrees(3) .setMinSamplesPerLeaf(1) .setLabelCol("label") .setFeatureCols("f0", "f1", "f2", "f3") .linkFrom(batchSource); BatchOperator <?> predictBatchOp = new GbdtRegPredictBatchOp() .setPredictionCol("pred"); StreamOperator <?> predictStreamOp = new GbdtRegPredictStreamOp(trainOp) .setPredictionCol("pred"); predictBatchOp.linkFrom(trainOp, batchSource).print(); predictStreamOp.linkFrom(streamSource).print(); StreamOperator.execute(); } }
f0 | f1 | f2 | f3 | label | pred |
---|---|---|---|---|---|
1.0000 | A | 0 | 0 | 0 | 0.0000 |
2.0000 | B | 1 | 1 | 0 | 0.0000 |
3.0000 | C | 2 | 2 | 1 | 1.0000 |
4.0000 | D | 3 | 3 | 1 | 1.0000 |
f0 | f1 | f2 | f3 | label | pred |
---|---|---|---|---|---|
1.0000 | A | 0 | 0 | 0 | 0.0000 |
4.0000 | D | 3 | 3 | 1 | 1.0000 |
3.0000 | C | 2 | 2 | 1 | 1.0000 |
2.0000 | B | 1 | 1 | 0 | 0.0000 |