Java 类名:com.alibaba.alink.operator.batch.regression.LinearRegStepwiseTrainBatchOp
Python 类名:LinearRegStepwiseTrainBatchOp
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
|---|---|---|---|---|---|---|
| featureCols | 特征列名 | 特征列名,必选 | String[] | ✓ | 所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT] | |
| labelCol | 标签列名 | 输入表中的标签列名 | String | ✓ | ||
| method | 回归统计的方法 | 可取值包括:stepwise,forward,backward | String | “Stepwise”, “Forward”, “Backward” | “Forward” |
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
[16.3, 1.1, 1.1],
[16.8, 1.4, 1.5],
[19.2, 1.7, 1.8],
[18.0, 1.7, 1.7],
[19.5, 1.8, 1.9],
[20.9, 1.8, 1.8],
[21.1, 1.9, 1.8],
[20.9, 2.0, 2.1],
[20.3, 2.3, 2.4],
[22.0, 2.4, 2.5]
])
batchData = BatchOperator.fromDataframe(df, schemaStr='y double, x1 double, x2 double')
lrs = LinearRegStepwiseTrainBatchOp()\
.setFeatureCols(["x1", "x2"])\
.setLabelCol("y")\
.setMethod("Forward")
model = batchData.link(lrs)
predictor = LinearRegStepwisePredictBatchOp()\
.setPredictionCol("pred")
predictor.linkFrom(model, batchData).print()
| y | x1 | x2 | pred |
|---|---|---|---|
| 16.3 | 1.1 | 1.1 | 16.380060195635785 |
| 16.8 | 1.4 | 1.5 | 17.698344620015032 |
| 19.2 | 1.7 | 1.8 | 19.01662904439428 |
| 18.0 | 1.7 | 1.7 | 19.01662904439428 |
| 19.5 | 1.8 | 1.9 | 19.456057185854025 |
| 20.9 | 1.8 | 1.8 | 19.456057185854025 |
| 21.1 | 1.9 | 1.8 | 19.89548532731377 |
| 20.9 | 2.0 | 2.1 | 20.33491346877352 |
| 20.3 | 2.3 | 2.4 | 21.653197893152765 |
| 22.0 | 2.4 | 2.5 | 22.092626034612515 |