Java 类名:com.alibaba.alink.operator.batch.regression.LinearSvrPredictBatchOp
Python 类名:LinearSvrPredictBatchOp
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
vectorCol | 向量列名 | 向量列对应的列名,默认值是null | String | 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] | null | |
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ [16.3, 1.1, 1.1], [16.8, 1.4, 1.5], [19.2, 1.7, 1.8], [18.0, 1.7, 1.7], [19.5, 1.8, 1.9], [20.9, 1.8, 1.8], [21.1, 1.9, 1.8], [20.9, 2.0, 2.1], [20.3, 2.3, 2.4], [22.0, 2.4, 2.5] ]) batchSource = BatchOperator.fromDataframe(df, schemaStr=' y double, x1 double, x2 double') lsvr = LinearSvrTrainBatchOp()\ .setFeatureCols(["x1", "x2"])\ .setLabelCol("y")\ .setC(1.0)\ .setTau(0.01) model = batchSource.link(lsvr) predictor = LinearSvrPredictBatchOp()\ .setPredictionCol("pred") predictor.linkFrom(model, batchSource).print()
y | x1 | x2 | pred |
---|---|---|---|
16.3 | 1.1 | 1.1 | 16.48073043727051 |
16.8 | 1.4 | 1.5 | 17.236649847389877 |
19.2 | 1.7 | 1.8 | 18.651637270539197 |
18.0 | 1.7 | 1.7 | 19.31070528356914 |
19.5 | 1.8 | 1.9 | 19.123299744922306 |
20.9 | 1.8 | 1.8 | 19.78236775795225 |
21.1 | 1.9 | 1.8 | 20.913098245365298 |
20.9 | 2.0 | 2.1 | 20.066624693688514 |
20.3 | 2.3 | 2.4 | 21.481612116837834 |
22.0 | 2.4 | 2.5 | 21.953274591220936 |