Java 类名:com.alibaba.alink.operator.batch.regression.RandomForestRegPredictBatchOp
Python 类名:RandomForestRegPredictBatchOp
随机森林回归是一种常用的树模型,由于bagging的过程,可以避免过拟合
随机森林回归组件支持稠密数据格式
支持带样本权重的训练
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ [1.0, "A", 0, 0, 0], [2.0, "B", 1, 1, 0], [3.0, "C", 2, 2, 1], [4.0, "D", 3, 3, 1] ]) batchSource = BatchOperator.fromDataframe(df, schemaStr=' f0 double, f1 string, f2 int, f3 int, label int') streamSource = StreamOperator.fromDataframe(df, schemaStr=' f0 double, f1 string, f2 int, f3 int, label int') trainOp = RandomForestRegTrainBatchOp()\ .setLabelCol('label')\ .setFeatureCols(['f0', 'f1', 'f2', 'f3'])\ .linkFrom(batchSource) RandomForestRegPredictBatchOp()\ .setPredictionCol('pred')\ .linkFrom(trainOp, batchSource).print() RandomForestRegPredictStreamOp(trainOp)\ .setPredictionCol('pred')\ .linkFrom(streamSource)\ .print() StreamOperator.execute()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.regression.RandomForestRegPredictBatchOp; import com.alibaba.alink.operator.batch.regression.RandomForestRegTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.regression.RandomForestRegPredictStreamOp; import com.alibaba.alink.operator.stream.source.MemSourceStreamOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class RandomForestRegPredictBatchOpTest { @Test public void testRandomForestRegPredictBatchOp() throws Exception { List <Row> df = Arrays.asList( Row.of(1.0, "A", 0, 0, 0), Row.of(2.0, "B", 1, 1, 0), Row.of(3.0, "C", 2, 2, 1), Row.of(4.0, "D", 3, 3, 1) ); BatchOperator <?> batchSource = new MemSourceBatchOp(df, " f0 double, f1 string, f2 int, f3 int, label int"); StreamOperator <?> streamSource = new MemSourceStreamOp(df, " f0 double, f1 string, f2 int, f3 int, label " + "int"); BatchOperator <?> trainOp = new RandomForestRegTrainBatchOp() .setLabelCol("label") .setFeatureCols("f0", "f1", "f2", "f3") .linkFrom(batchSource); new RandomForestRegPredictBatchOp() .setPredictionCol("pred") .linkFrom(trainOp, batchSource).print(); new RandomForestRegPredictStreamOp(trainOp) .setPredictionCol("pred") .linkFrom(streamSource) .print(); StreamOperator.execute(); } }
批预测结果
f0 | f1 | f2 | f3 | label | pred |
---|---|---|---|---|---|
1.0000 | A | 0 | 0 | 0 | 0.0000 |
2.0000 | B | 1 | 1 | 0 | 0.0000 |
3.0000 | C | 2 | 2 | 1 | 1.0000 |
4.0000 | D | 3 | 3 | 1 | 1.0000 |
流预测结果
f0 | f1 | f2 | f3 | label | pred |
---|---|---|---|---|---|
1.0000 | A | 0 | 0 | 0 | 0.0000 |
4.0000 | D | 3 | 3 | 1 | 1.0000 |
2.0000 | B | 1 | 1 | 0 | 0.0000 |
3.0000 | C | 2 | 2 | 1 | 1.0000 |