Java 类名:com.alibaba.alink.operator.batch.classification.Id3PredictBatchOp
Python 类名:Id3PredictBatchOp
id3是一种常用的树模型
id3组件支持稠密数据格式
支持带样本权重的训练
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | |||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ [1.0, "A", 0, 0, 0], [2.0, "B", 1, 1, 0], [3.0, "C", 2, 2, 1], [4.0, "D", 3, 3, 1] ]) batchSource = BatchOperator.fromDataframe( df, schemaStr=' f0 double, f1 string, f2 int, f3 int, label int') streamSource = StreamOperator.fromDataframe( df, schemaStr=' f0 double, f1 string, f2 int, f3 int, label int') trainOp = Id3TrainBatchOp()\ .setLabelCol('label')\ .setFeatureCols(['f0', 'f1', 'f2', 'f3'])\ .linkFrom(batchSource) predictBatchOp = Id3PredictBatchOp()\ .setPredictionDetailCol('pred_detail')\ .setPredictionCol('pred') predictStreamOp = Id3PredictStreamOp(trainOp)\ .setPredictionDetailCol('pred_detail')\ .setPredictionCol('pred') predictBatchOp.linkFrom(trainOp, batchSource).print() predictStreamOp.linkFrom(streamSource).print() StreamOperator.execute()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.classification.Id3PredictBatchOp; import com.alibaba.alink.operator.batch.classification.Id3TrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.classification.Id3PredictStreamOp; import com.alibaba.alink.operator.stream.source.MemSourceStreamOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class Id3PredictBatchOpTest { @Test public void testId3PredictBatchOp() throws Exception { List <Row> df = Arrays.asList( Row.of(1.0, "A", 0, 0, 0), Row.of(2.0, "B", 1, 1, 0), Row.of(3.0, "C", 2, 2, 1), Row.of(4.0, "D", 3, 3, 1) ); BatchOperator <?> batchSource = new MemSourceBatchOp( df, " f0 double, f1 string, f2 int, f3 int, label int"); StreamOperator <?> streamSource = new MemSourceStreamOp( df, " f0 double, f1 string, f2 int, f3 int, label int"); BatchOperator <?> trainOp = new Id3TrainBatchOp() .setLabelCol("label") .setFeatureCols("f0", "f1", "f2", "f3") .linkFrom(batchSource); BatchOperator <?> predictBatchOp = new Id3PredictBatchOp() .setPredictionDetailCol("pred_detail") .setPredictionCol("pred"); StreamOperator <?> predictStreamOp = new Id3PredictStreamOp(trainOp) .setPredictionDetailCol("pred_detail") .setPredictionCol("pred"); predictBatchOp.linkFrom(trainOp, batchSource).print(); predictStreamOp.linkFrom(streamSource).print(); StreamOperator.execute(); } }
f0 | f1 | f2 | f3 | label | pred | pred_detail |
---|---|---|---|---|---|---|
1.0000 | A | 0 | 0 | 0 | 0 | {“0”:1.0,“1”:0.0} |
2.0000 | B | 1 | 1 | 0 | 0 | {“0”:1.0,“1”:0.0} |
3.0000 | C | 2 | 2 | 1 | 1 | {“0”:0.0,“1”:1.0} |
4.0000 | D | 3 | 3 | 1 | 1 | {“0”:0.0,“1”:1.0} |