朴素贝叶斯预测 (NaiveBayesPredictBatchOp)

Java 类名:com.alibaba.alink.operator.batch.classification.NaiveBayesPredictBatchOp

Python 类名:NaiveBayesPredictBatchOp

功能介绍

使用朴素贝叶斯模型用于多分类任务的预测。

使用方式

该组件是预测组件,需要配合训练组件 NaiveBayesTrainBatchOp 使用。

参数说明

名称 中文名称 描述 类型 是否必须? 取值范围 默认值
predictionCol 预测结果列名 预测结果列名 String
modelFilePath 模型的文件路径 模型的文件路径 String null
predictionDetailCol 预测详细信息列名 预测详细信息列名 String
reservedCols 算法保留列名 算法保留列 String[] null
numThreads 组件多线程线程个数 组件多线程线程个数 Integer 1

代码示例

Python 代码

from pyalink.alink import *

import pandas as pd

useLocalEnv(1)

df_data = pd.DataFrame([
       [1.0, 1.0, 0.0, 1.0, 1],
       [1.0, 0.0, 1.0, 1.0, 1],
       [1.0, 0.0, 1.0, 1.0, 1],
       [0.0, 1.0, 1.0, 0.0, 0],
       [0.0, 1.0, 1.0, 0.0, 0],
       [0.0, 1.0, 1.0, 0.0, 0],
       [0.0, 1.0, 1.0, 0.0, 0],
       [1.0, 1.0, 1.0, 1.0, 1],
       [0.0, 1.0, 1.0, 0.0, 0]
])

batchData = BatchOperator.fromDataframe(df_data, schemaStr='f0 double, f1 double, f2 double, f3 double, label int')

colnames = ["f0","f1","f2", "f3"]
ns = NaiveBayesTrainBatchOp().setFeatureCols(colnames).setLabelCol("label")
model = batchData.link(ns)

predictor = NaiveBayesPredictBatchOp().setPredictionCol("pred")
predictor.linkFrom(model, batchData).print()

Java 代码

import org.apache.flink.types.Row;

import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.classification.NaiveBayesPredictBatchOp;
import com.alibaba.alink.operator.batch.classification.NaiveBayesTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;

import java.util.Arrays;
import java.util.List;

public class NaiveBayesPredictBatchOpTest {
	@Test
	public void testNaiveBayesPredictBatchOp() throws Exception {
		List <Row> df_data = Arrays.asList(
			Row.of(1.0, 1.0, 0.0, 1.0, 1),
			Row.of(1.0, 0.0, 1.0, 1.0, 1),
			Row.of(1.0, 0.0, 1.0, 1.0, 1),
			Row.of(0.0, 1.0, 1.0, 0.0, 0),
			Row.of(0.0, 1.0, 1.0, 0.0, 0),
			Row.of(0.0, 1.0, 1.0, 0.0, 0),
			Row.of(0.0, 1.0, 1.0, 0.0, 0),
			Row.of(1.0, 1.0, 1.0, 1.0, 1),
			Row.of(0.0, 1.0, 1.0, 0.0, 0)
		);
		BatchOperator <?> batchData = new MemSourceBatchOp(df_data,
			"f0 double, f1 double, f2 double, f3 double, label int");
		BatchOperator <?> ns = new NaiveBayesTrainBatchOp().setFeatureCols("f0", "f1", "f2", "f3").setLabelCol(
			"label");
		BatchOperator model = batchData.link(ns);
		BatchOperator <?> predictor = new NaiveBayesPredictBatchOp().setPredictionCol("pred");
		predictor.linkFrom(model, batchData).print();
	}
}

运行结果

f0 f1 f2 f3 label pred
1.0 1.0 0.0 1.0 1 1
1.0 0.0 1.0 1.0 1 1
1.0 0.0 1.0 1.0 1 1
0.0 1.0 1.0 0.0 0 0
0.0 1.0 1.0 0.0 0 0
0.0 1.0 1.0 0.0 0 0
0.0 1.0 1.0 0.0 0 0
1.0 1.0 1.0 1.0 1 1
0.0 1.0 1.0 0.0 0 0