Java 类名:com.alibaba.alink.operator.batch.classification.LinearSvmPredictBatchOp
Python 类名:LinearSvmPredictBatchOp
线性SVM算法是经典的二分类算法,通过对打标签样本集合训练得到模型,使用模型预测样本的标签。逻辑回归组件支持稀疏、稠密两种数据格式。
SVM使用铰链损失函数(hinge loss)计算经验风险(empirical risk)并在求解系统中加入了正则化项以优化结构风险,是一个具有稀疏性
和稳健性的分类器。
SVM在各领域的模式识别问题中有应用,包括人像识别、文本分类、手写字符识别、生物信息学等。
[1] Vapnik, V.Statistical learning theory. 1998 (Vol. 3). .New York, NY:Wiley,1998:Chapter 10-11, pp.401-492.
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | |||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
vectorCol | 向量列名 | 向量列对应的列名,默认值是null | String | 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] | null | |
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df_data = pd.DataFrame([ [2, 1, 1], [3, 2, 1], [4, 3, 2], [2, 4, 1], [2, 2, 1], [4, 3, 2], [1, 2, 1], [5, 3, 2] ]) input = BatchOperator.fromDataframe(df_data, schemaStr='f0 int, f1 int, label int') dataTest = input colnames = ["f0","f1"] svm = LinearSvmTrainBatchOp().setFeatureCols(colnames).setLabelCol("label") model = input.link(svm) predictor = LinearSvmPredictBatchOp().setPredictionCol("pred") predictor.linkFrom(model, dataTest).print()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.classification.LinearSvmPredictBatchOp; import com.alibaba.alink.operator.batch.classification.LinearSvmTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class LinearSvmPredictBatchOpTest { @Test public void testLinearSvmPredictBatchOp() throws Exception { List <Row> df_data = Arrays.asList( Row.of(2, 1, 1), Row.of(3, 2, 1), Row.of(4, 3, 2), Row.of(2, 4, 1), Row.of(2, 2, 1), Row.of(4, 3, 2), Row.of(1, 2, 1), Row.of(5, 3, 2) ); BatchOperator <?> input = new MemSourceBatchOp(df_data, "f0 int, f1 int, label int"); BatchOperator dataTest = input; BatchOperator <?> svm = new LinearSvmTrainBatchOp().setFeatureCols("f0", "f1").setLabelCol("label"); BatchOperator model = input.link(svm); BatchOperator <?> predictor = new LinearSvmPredictBatchOp().setPredictionCol("pred"); predictor.linkFrom(model, dataTest).print(); } }
f0 | f1 | label | pred |
---|---|---|---|
2 | 1 | 1 | 1 |
3 | 2 | 1 | 1 |
4 | 3 | 2 | 2 |
2 | 4 | 1 | 1 |
2 | 2 | 1 | 1 |
4 | 3 | 2 | 2 |
1 | 2 | 1 | 1 |
5 | 3 | 2 | 2 |