Java 类名:com.alibaba.alink.operator.stream.regression.IsotonicRegPredictStreamOp
Python 类名:IsotonicRegPredictStreamOp
保序回归在观念上是寻找一组非递减的片段连续线性函数(piecewise linear continuous functions),即保序函数,使其与样本尽可能的接近。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 | ||
modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | ||
modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | ||
modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ [0.35, 1], [0.6, 1], [0.55, 1], [0.5, 1], [0.18, 0], [0.1, 1], [0.8, 1], [0.45, 0], [0.4, 1], [0.7, 0], [0.02, 1], [0.3, 0], [0.27, 1], [0.2, 0], [0.9, 1]]) data = BatchOperator.fromDataframe(df, schemaStr="label double, feature double") dataStream = StreamOperator.fromDataframe(df, schemaStr="label double, feature double") trainOp = IsotonicRegTrainBatchOp()\ .setFeatureCol("feature")\ .setLabelCol("label") model = trainOp.linkFrom(data) predictOp = IsotonicRegPredictStreamOp(model)\ .setPredictionCol("result") predictOp.linkFrom(dataStream).print() StreamOperator.execute()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.regression.IsotonicRegTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.regression.IsotonicRegPredictStreamOp; import com.alibaba.alink.operator.stream.source.MemSourceStreamOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class IsotonicRegPredictStreamOpTest { @Test public void testIsotonicRegPredictStreamOp() throws Exception { List <Row> df = Arrays.asList( Row.of(0.35, 1.0), Row.of(0.6, 1.0), Row.of(0.55, 1.0), Row.of(0.5, 1.0), Row.of(0.18, 0.0), Row.of(0.1, 1.0), Row.of(0.8, 1.0), Row.of(0.45, 0.0), Row.of(0.4, 1.0), Row.of(0.7, 0.0), Row.of(0.02, 1.0), Row.of(0.3, 0.0), Row.of(0.27, 1.0), Row.of(0.2, 0.0), Row.of(0.9, 1.0) ); BatchOperator <?> data = new MemSourceBatchOp(df, "feature double, label double"); StreamOperator <?> dataStream = new MemSourceStreamOp(df, "feature double, label double"); BatchOperator <?> trainOp = new IsotonicRegTrainBatchOp() .setFeatureCol("feature") .setLabelCol("label"); BatchOperator <?> model = trainOp.linkFrom(data); StreamOperator <?> predictOp = new IsotonicRegPredictStreamOp(model) .setPredictionCol("result"); predictOp.linkFrom(dataStream).print(); StreamOperator.execute(); } }
model_id | model_info |
---|---|
0 | {“vectorCol”:“"col2"”,“featureIndex”:“0”,“featureCol”:null} |
1048576 | [0.02,0.3,0.35,0.45,0.5,0.7] |
2097152 | [0.5,0.5,0.6666666865348816,0.6666666865348816,0.75,0.75] |
col1 | col2 | col3 | pred |
---|---|---|---|
1.0 | 0.9 | 1.0 | 0.75 |
0.0 | 0.7 | 1.0 | 0.75 |
1.0 | 0.35 | 1.0 | 0.6666666865348816 |
1.0 | 0.02 | 1.0 | 0.5 |
1.0 | 0.27 | 1.0 | 0.5 |
1.0 | 0.5 | 1.0 | 0.75 |
0.0 | 0.18 | 1.0 | 0.5 |
0.0 | 0.45 | 1.0 | 0.6666666865348816 |
1.0 | 0.8 | 1.0 | 0.75 |
1.0 | 0.6 | 1.0 | 0.75 |
1.0 | 0.4 | 1.0 | 0.6666666865348816 |
0.0 | 0.3 | 1.0 | 0.5 |
1.0 | 0.55 | 1.0 | 0.75 |
0.0 | 0.2 | 1.0 | 0.5 |
1.0 | 0.1 | 1.0 | 0.5 |