Java 类名:com.alibaba.alink.operator.batch.huge.HugeDeepWalkTrainBatchOp
Python 类名:HugeDeepWalkTrainBatchOp
DeepWalk是2014年提出的一个新的方法,用来为网络中的结点学习隐式特征表达,即将网络中的每一个点表示成连续特征空间中的一个点向量。DeepWalk是无监督特征学习方法,利用随机游走(Random Walk)及语言模型(Language modeling),学习出的隐式特征能够捕捉到网络的结构信息。后续论文也提出了一些扩展,如结合损失函数进行有监督学习、结合文本信息等等
DeepWalk: Online Learning of Social Representations
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
sourceCol | 起始点列名 | 用来指定起始点列 | String | ✓ | ||
targetCol | 中止点点列名 | 用来指定中止点列 | String | ✓ | ||
walkLength | 游走的长度 | 随机游走完向量的长度 | Integer | ✓ | ||
walkNum | 路径数目 | 每一个起始点游走出多少条路径 | Integer | ✓ | ||
alpha | 学习率 | 学习率 | Double | 0.025 | ||
batchSize | batch大小 | batch大小, 按行计算 | Integer | x >= 1 | ||
isToUndigraph | 是否转无向图 | 选为true时,会将当前图转成无向图,然后再游走 | Boolean | false | ||
minCount | 最小词频 | 最小词频 | Integer | 5 | ||
negative | 负采样大小 | 负采样大小 | Integer | 5 | ||
numCheckpoint | checkPoint 数目 | checkPoint 数目 | Integer | 1 | ||
numIter | 迭代次数 | 迭代次数,默认为1。 | Integer | 1 | ||
randomWindow | 是否使用随机窗口 | 是否使用随机窗口,默认使用 | String | “true” | ||
vectorSize | embedding的向量长度 | embedding的向量长度 | Integer | x >= 1 | 100 | |
weightCol | 权重列名 | 权重列对应的列名 | String | 所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT] | null | |
window | 窗口大小 | 窗口大小 | Integer | 5 |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df_data = pd.DataFrame([ ["Bob", "Lucy", 1.], ["Lucy", "Bob", 1.], ["Lucy", "Bella", 1.], ["Bella", "Lucy", 1.], ["Alice", "Lisa", 1.], ["Lisa", "Alice", 1.], ["Lisa", "Karry", 1.], ["Karry", "Lisa", 1.], ["Karry", "Bella", 1.], ["Bella", "Karry", 1.] ]) source = BatchOperator.fromDataframe(df_data, schemaStr='start string, end string, value double') deepWalkBatchOp = HugeDeepWalkTrainBatchOp() \ .setSourceCol("start") \ .setTargetCol("end") \ .setWeightCol("value") \ .setWalkNum(2) \ .setWalkLength(2) \ .setMinCount(1) \ .setVectorSize(4) deepWalkBatchOp.linkFrom(source).print()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.huge.HugeDeepWalkTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class HugeDeepWalkTrainBatchOpTest { @Test public void testHugeDeepWalkTrainBatchOp() throws Exception { List <Row> df_data = Arrays.asList( Row.of("Bob", "Lucy", 1.), Row.of("Lucy", "Bob", 1.), Row.of("Lucy", "Bella", 1.), Row.of("Bella", "Lucy", 1.), Row.of("Alice", "Lisa", 1.), Row.of("Lisa", "Alice", 1.), Row.of("Lisa", "Karry", 1.), Row.of("Karry", "Lisa", 1.), Row.of("Karry", "Bella", 1.), Row.of("Bella", "Karry", 1.) ); BatchOperator <?> source = new MemSourceBatchOp(df_data, "start string, end string, value double"); BatchOperator <?> deepWalkBatchOp = new HugeDeepWalkTrainBatchOp() .setSourceCol("start") .setTargetCol("end") .setWeightCol("value") .setWalkNum(2) .setWalkLength(2) .setMinCount(1) .setVectorSize(4); deepWalkBatchOp.linkFrom(source).print(); } }
node | vec |
---|---|
Karry | 0.03438692167401314,-0.04779096320271492,0.012648836709558964,-0.09576538950204849 |
Lisa | 0.11595723778009415,-0.08507091552019119,0.1099027618765831,0.013517010025680065 |
Bella | 0.05783883109688759,0.08286115527153015,-0.06497485190629959,0.026532595977187157 |
Alice | 0.05775630846619606,-0.099935382604599,-0.022451162338256836,-0.023144230246543884 |
Lucy | 0.11699658632278442,0.05271214246749878,-0.12347490340471268,-0.08684996515512466 |
Bob | -0.07306862622499466,-0.11596906185150146,-0.04183155298233032,0.03973118215799332 |