Java 类名:com.alibaba.alink.operator.batch.huge.HugeLabeledWord2VecTrainBatchOp
Python 类名:HugeLabeledWord2VecTrainBatchOp
Word2Vec是Google在2013年开源的一个将词表转为向量的算法,其利用神经网络,可以通过训练,将词映射到K维度空间向量,甚至对于表示词的向量进行操作还能和语义相对应,由于其简单和高效引起了很多人的关注。
Google Word2Vec的工具包相关链接:https://code.google.com/p/word2vec/
支持metapath2vec++训练:metapath2vec: Scalable Representation Learning forHeterogeneous Networks
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
selectedCol | 计算列对应的列名 | 计算列对应的列名 | String | ✓ | 所选列类型为 [STRING] | |
typeCol | 节点类型列名 | 用来指定节点类型列 | String | ✓ | ||
vertexCol | 节点列名 | 用来指定节点列 | String | ✓ | 所选列类型为 [STRING] | |
alpha | 学习率 | 学习率 | Double | 0.025 | ||
batchSize | batch大小 | batch大小, 按行计算 | Integer | x >= 1 | ||
minCount | 最小词频 | 最小词频 | Integer | 5 | ||
negative | 负采样大小 | 负采样大小 | Integer | 5 | ||
numCheckpoint | checkPoint 数目 | checkPoint 数目 | Integer | 1 | ||
numIter | 迭代次数 | 迭代次数,默认为1。 | Integer | 1 | ||
randomWindow | 是否使用随机窗口 | 是否使用随机窗口,默认使用 | String | “true” | ||
vectorSize | embedding的向量长度 | embedding的向量长度 | Integer | x >= 1 | 100 | |
window | 窗口大小 | 窗口大小 | Integer | 5 | ||
wordDelimiter | 单词分隔符 | 单词之间的分隔符 | String | “ ” |
from pyalink.alink import * import pandas as pd useLocalEnv(1) tokens = pd.DataFrame([ ["Bob Lucy Bella"] ]) nodeType = pd.DataFrame([ ["Bob", "A"], ["Bella", "A"], ["Karry", "A"], ["Lucy", "B"], ["Alice", "B"], ["Lisa", "B"] ]) source = BatchOperator.fromDataframe(tokens, schemaStr='tokens string') typed = BatchOperator.fromDataframe(nodeType, schemaStr='node string, type string') labeledWord2vecBatchOp = HugeLabeledWord2VecTrainBatchOp() \ .setSelectedCol("tokens") \ .setVertexCol("node") \ .setTypeCol("type") \ .setMinCount(1) \ .setVectorSize(4) labeledWord2vecBatchOp.linkFrom(source, typed).print()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.huge.HugeLabeledWord2VecTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class HugeLabeledWord2VecTrainBatchOpTest { @Test public void testHugeLabeledWord2VecTrainBatchOp() throws Exception { List <Row> tokens = Arrays.asList( Row.of("Bob Lucy Bella") ); List <Row> nodeType = Arrays.asList( Row.of("Bob", "A"), Row.of("Bella", "A"), Row.of("Karry", "A"), Row.of("Lucy", "B"), Row.of("Alice", "B"), Row.of("Lisa", "B") ); BatchOperator <?> source = new MemSourceBatchOp(tokens, "tokens string"); BatchOperator <?> typed = new MemSourceBatchOp(nodeType, "node string, type string"); BatchOperator <?> labeledWord2vecBatchOp = new HugeLabeledWord2VecTrainBatchOp() .setSelectedCol("tokens") .setVertexCol("node") .setTypeCol("type") .setMinCount(1) .setVectorSize(4); labeledWord2vecBatchOp.linkFrom(source, typed).print(); } }
word | vec |
---|---|
Lucy | 0.03437602147459984,-0.04761518910527229,0.012536839582026005,-0.09563367068767548 |
Bob | 0.057709891349077225,0.08290477842092514,-0.06487766653299332,0.026675613597035408 |
Bella | 0.02439533919095993,0.07039660215377808,-0.04170553758740425,-0.061801809817552567 |