Java 类名:com.alibaba.alink.operator.batch.huge.HugeNode2VecTrainBatchOp
Python 类名:HugeNode2VecTrainBatchOp
node2vec是一种用于网络中的特征学习有效的可扩展算法,该算法可以使用SGD有效地优化,能根据网络中的既定原则,为发现符合不同等值的表示提供了灵活性
node2vec: Scalable Feature Learning for Networks
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
sourceCol | 起始点列名 | 用来指定起始点列 | String | ✓ | ||
targetCol | 中止点点列名 | 用来指定中止点列 | String | ✓ | ||
walkLength | 游走的长度 | 随机游走完向量的长度 | Integer | ✓ | ||
walkNum | 路径数目 | 每一个起始点游走出多少条路径 | Integer | ✓ | ||
alpha | 学习率 | 学习率 | Double | 0.025 | ||
batchSize | batch大小 | batch大小, 按行计算 | Integer | x >= 1 | ||
isToUndigraph | 是否转无向图 | 选为true时,会将当前图转成无向图,然后再游走 | Boolean | false | ||
minCount | 最小词频 | 最小词频 | Integer | 5 | ||
negative | 负采样大小 | 负采样大小 | Integer | 5 | ||
numCheckpoint | checkPoint 数目 | checkPoint 数目 | Integer | 1 | ||
numIter | 迭代次数 | 迭代次数,默认为1。 | Integer | 1 | ||
p | p | p越小越趋向于访问到已经访问的节点,反之则趋向于访问没有访问过的节点 | Double | 1.0 | ||
q | q | q>1时行为类似于bfs趋向于访问和访问过的节点相连的节点,q<1时行为类似于dfs | Double | 1.0 | ||
randomWindow | 是否使用随机窗口 | 是否使用随机窗口,默认使用 | String | “true” | ||
vectorSize | embedding的向量长度 | embedding的向量长度 | Integer | x >= 1 | 100 | |
weightCol | 权重列名 | 权重列对应的列名 | String | 所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT] | null | |
window | 窗口大小 | 窗口大小 | Integer | 5 | ||
wordDelimiter | 单词分隔符 | 单词之间的分隔符 | String | “ ” |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df_data = pd.DataFrame([ ["Bob", "Lucy", 1.], ["Lucy", "Bob", 1.], ["Lucy", "Bella", 1.], ["Bella", "Lucy", 1.], ["Alice", "Lisa", 1.], ["Lisa", "Alice", 1.], ["Lisa", "Karry", 1.], ["Karry", "Lisa", 1.], ["Karry", "Bella", 1.], ["Bella", "Karry", 1.] ]) source = BatchOperator.fromDataframe(df_data, schemaStr='start string, end string, value double') node2vecBatchOp = HugeNode2VecTrainBatchOp() \ .setSourceCol("start") \ .setTargetCol("end") \ .setWeightCol("value") \ .setWalkNum(2) \ .setWalkLength(2) \ .setMinCount(1) \ .setVectorSize(4) node2vecBatchOp.linkFrom(source).print()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.huge.HugeNode2VecTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class HugeNode2VecTrainBatchOpTest { @Test public void testHugeNode2VecTrainBatchOp() throws Exception { List <Row> df_data = Arrays.asList( Row.of("Bob", "Lucy", 1.), Row.of("Lucy", "Bob", 1.), Row.of("Lucy", "Bella", 1.), Row.of("Bella", "Lucy", 1.), Row.of("Alice", "Lisa", 1.), Row.of("Lisa", "Alice", 1.), Row.of("Lisa", "Karry", 1.), Row.of("Karry", "Lisa", 1.), Row.of("Karry", "Bella", 1.), Row.of("Bella", "Karry", 1.) ); BatchOperator <?> source = new MemSourceBatchOp(df_data, "start string, end string, value double"); BatchOperator <?> node2vecBatchOp = new HugeNode2VecTrainBatchOp() .setSourceCol("start") .setTargetCol("end") .setWeightCol("value") .setWalkNum(2) .setWalkLength(2) .setMinCount(1) .setVectorSize(4); node2vecBatchOp.linkFrom(source).print(); } }
node | vec |
---|---|
Karry | 0.02435881271958351,0.0703350380063057,-0.04173225536942482,-0.06183897703886032 |
Bella | -0.028720347210764885,0.02828666940331459,0.12123052030801773,0.12075022608041763 |
Alice | 0.03435942903161049,-0.04773801192641258,0.0125938905403018,-0.09576953202486038 |
Lisa | -0.07306616753339767,-0.11595576256513596,-0.04181118682026863,0.03970039263367653 |
Bob | 0.0577755942940712,0.08282522112131119,-0.06487344205379486,0.026600968092679977 |
Lucy | 0.057738181203603745,-0.09987597167491913,-0.022486409172415733,-0.02312176302075386 |