Java 类名:com.alibaba.alink.operator.stream.outlier.KdeOutlierStreamOp
Python 类名:KdeOutlierStreamOp
KDE(Kernel Density Estimation核密度估计)是一种通过数据样本集,得到总体的概率分布的非参数估计方法。KDE异常检测算法将概率密度小的点视为异常点。
该组件以每个点的数据、带宽作为参数,根据设置的核函数(高斯核或线性核)估计样本中每个数据点及其附近的概率密度函数。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
bandwidth | KDE带宽 | 核密度函数带宽参数 | Double | ✓ | x >= 0.0 | |
predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
distanceType | 距离度量方式 | 聚类使用的距离类型 | String | “EUCLIDEAN”, “COSINE”, “INNERPRODUCT”, “CITYBLOCK”, “JACCARD”, “PEARSON” | “EUCLIDEAN” | |
featureCols | 特征列名数组 | 特征列名数组,默认全选 | String[] | 所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT] | null | |
groupCols | 分组列名数组 | 分组列名,多列,可选,默认不选 | String[] | null | ||
kernelType | 核密度函数类型 | 核密度函数类型,可取为“GAUSSIAN”,“LINEAR” | String | “GAUSSIAN”, “LINEAR” | “GAUSSIAN” | |
numNeighbors | 相邻点个数 | 计算KDE时使用的相邻点个数(默认使用全部点) | Integer | -1 | ||
outlierThreshold | 异常评分阈值 | 只有评分大于该阈值才会被认为是异常点 | Double | |||
precedingRows | 数据窗口大小 | 数据窗口大小 | Integer | null | ||
precedingTime | 时间窗口大小 | 时间窗口大小 | String | null | ||
predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | |||
tensorCol | tensor列 | tensor列 | String | 所选列类型为 [BOOL_TENSOR, BYTE_TENSOR, DOUBLE_TENSOR, FLOAT_TENSOR, INT_TENSOR, LONG_TENSOR, STRING, STRING_TENSOR, TENSOR, UBYTE_TENSOR] | null | |
timeCol | 时间戳列(TimeStamp) | 时间戳列(TimeStamp) | String | null | ||
vectorCol | 向量列名 | 向量列对应的列名,默认值是null | String | 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] | null | |
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 |