该文档涉及的组件

    One-Class SVM流式异常检测 (OcsvmModelOutlierPredictStreamOp)

    Java 类名:com.alibaba.alink.operator.stream.outlier.OcsvmModelOutlierPredictStreamOp

    Python 类名:OcsvmModelOutlierPredictStreamOp

    功能介绍

    • 与传统SVM不同的是,one-class SVM是一种非监督的学习算法,经常被用来做异常点检测。在该算法的训练集中只有一类positive(或者negative)的数据,而没有(或存在极少量)另外一类,通常称其为异常点。该算法需要学习(learn)的就是边界(boundary),而不是最大间隔(maximum margin),通过边界对异常点进行预测。

    参数说明

    名称 中文名称 描述 类型 是否必须? 取值范围 默认值
    predictionCol 预测结果列名 预测结果列名 String
    modelFilePath 模型的文件路径 模型的文件路径 String null
    outlierThreshold 异常评分阈值 只有评分大于该阈值才会被认为是异常点 Double
    predictionDetailCol 预测详细信息列名 预测详细信息列名 String
    reservedCols 算法保留列名 算法保留列 String[] null
    numThreads 组件多线程线程个数 组件多线程线程个数 Integer 1
    modelStreamFilePath 模型流的文件路径 模型流的文件路径 String null
    modelStreamScanInterval 扫描模型路径的时间间隔 描模型路径的时间间隔,单位秒 Integer 10
    modelStreamStartTime 模型流的起始时间 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) String null