该文档涉及的组件

ALS:打分推荐推荐 (AlsRateRecommBatchOp)

Java 类名:com.alibaba.alink.operator.batch.recommendation.AlsRateRecommBatchOp

Python 类名:AlsRateRecommBatchOp

功能介绍

ALS打分预测,可对每一个(user,item)输入对进行评分预测。这里的ALS模型可以是隐式模型,也可以是显式模型。

参数说明

名称 中文名称 描述 类型 是否必须? 取值范围 默认值
itemCol Item列列名 Item列列名 String
recommCol 推荐结果列名 推荐结果列名 String
userCol User列列名 User列列名 String
reservedCols 算法保留列名 算法保留列 String[] null
numThreads 组件多线程线程个数 组件多线程线程个数 Integer 1

代码示例

Python 代码

from pyalink.alink import *

import pandas as pd

useLocalEnv(1)

df_data = pd.DataFrame([
    [1, 1, 0.6],
    [2, 2, 0.8],
    [2, 3, 0.6],
    [4, 1, 0.6],
    [4, 2, 0.3],
    [4, 3, 0.4],
])

data = BatchOperator.fromDataframe(df_data, schemaStr='user bigint, item bigint, rating double')

als = AlsTrainBatchOp().setUserCol("user").setItemCol("item").setRateCol("rating") \
    .setNumIter(10).setRank(10).setLambda(0.01)
predictor = AlsRateRecommBatchOp()\
    .setUserCol("user").setItemCol("item").setRecommCol("predicted_rating")

model = als.linkFrom(data)
predictor.linkFrom(model, data).print()

Java 代码

import org.apache.flink.types.Row;

import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.recommendation.AlsRateRecommBatchOp;
import com.alibaba.alink.operator.batch.recommendation.AlsTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;

import java.util.Arrays;
import java.util.List;

public class AlsRateRecommBatchOpTest {
	@Test
	public void testAlsRateRecommBatchOp() throws Exception {
		List <Row> df_data = Arrays.asList(
			Row.of(1, 1, 0.6),
			Row.of(2, 2, 0.8),
			Row.of(2, 3, 0.6),
			Row.of(4, 1, 0.6),
			Row.of(4, 2, 0.3),
			Row.of(4, 3, 0.4)
		);
		BatchOperator <?> data = new MemSourceBatchOp(df_data, "user int, item int, rating double");
		BatchOperator <?> als = new AlsTrainBatchOp().setUserCol("user").setItemCol("item").setRateCol("rating")
			.setNumIter(10).setRank(10).setLambda(0.01);
		BatchOperator <?> predictor = new AlsRateRecommBatchOp()
			.setUserCol("user").setItemCol("item").setRecommCol("predicted_rating");
		BatchOperator model = als.linkFrom(data);
		predictor.linkFrom(model, data).print();
	}
}

运行结果

user item rating predicted_rating
1 1 0.6000 0.5810
2 2 0.8000 0.7669
2 3 0.6000 0.5809
4 1 0.6000 0.5753
4 2 0.3000 0.2989
4 3 0.4000 0.3833