该文档涉及的组件

ALS:相似items推荐 (AlsSimilarItemsRecommBatchOp)

Java 类名:com.alibaba.alink.operator.batch.recommendation.AlsSimilarItemsRecommBatchOp

Python 类名:AlsSimilarItemsRecommBatchOp

功能介绍

使用ALS (Alternating Lease Square)model 对相似的item的进行推荐。这里的ALS模型可以是隐式模型,也可以是显式模型,输出格式是MTable。

参数说明

名称 中文名称 描述 类型 是否必须? 取值范围 默认值
itemCol Item列列名 Item列列名 String
recommCol 推荐结果列名 推荐结果列名 String
initRecommCol 初始推荐列列名 初始推荐列列名 String 所选列类型为 [M_TABLE, STRING] null
k 推荐TOP数量 推荐TOP数量 Integer 10
reservedCols 算法保留列名 算法保留列 String[] null
numThreads 组件多线程线程个数 组件多线程线程个数 Integer 1

代码示例

Python 代码

from pyalink.alink import *

import pandas as pd

useLocalEnv(1)

df_data = pd.DataFrame([
    [1, 1, 0.6],
    [2, 2, 0.8],
    [2, 3, 0.6],
    [4, 1, 0.6],
    [4, 2, 0.3],
    [4, 3, 0.4],
])

data = BatchOperator.fromDataframe(df_data, schemaStr='user bigint, item bigint, rating double')

als = AlsTrainBatchOp().setUserCol("user").setItemCol("item").setRateCol("rating") \
    .setNumIter(10).setRank(10).setLambda(0.01)

model = als.linkFrom(data)
predictor = AlsSimilarItemsRecommBatchOp() \
    .setItemCol("item").setRecommCol("rec").setK(1).setReservedCols(["item"])

predictor.linkFrom(model, data).print();

Java 代码

import org.apache.flink.types.Row;

import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.recommendation.AlsSimilarItemsRecommBatchOp;
import com.alibaba.alink.operator.batch.recommendation.AlsTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;

import java.util.Arrays;
import java.util.List;

public class AlsSimilarItemsRecommBatchOpTest {
	@Test
	public void testAlsSimilarItemsRecommBatchOp() throws Exception {
		List <Row> df_data = Arrays.asList(
			Row.of(1, 1, 0.6),
			Row.of(2, 2, 0.8),
			Row.of(2, 3, 0.6),
			Row.of(4, 1, 0.6),
			Row.of(4, 2, 0.3),
			Row.of(4, 3, 0.4)
		);
		BatchOperator <?> data = new MemSourceBatchOp(df_data, "user int, item int, rating double");
		BatchOperator <?> als = new AlsTrainBatchOp().setUserCol("user").setItemCol("item").setRateCol("rating")
			.setNumIter(10).setRank(10).setLambda(0.01);
		BatchOperator model = als.linkFrom(data);
		BatchOperator <?> predictor = new AlsSimilarItemsRecommBatchOp()
			.setItemCol("item").setRecommCol("rec").setK(1).setReservedCols("item");
		predictor.linkFrom(model, data).print();
	}
}

运行结果

item rec
1 {“object”:“[3]”,“score”:“[0.8821980357170105]”}
2 {“object”:“[3]”,“score”:“[0.9917739629745483]”}
3 {“object”:“[2]”,“score”:“[0.9917739629745483]”}
1 {“object”:“[3]”,“score”:“[0.8821980357170105]”}
2 {“object”:“[3]”,“score”:“[0.9917739629745483]”}
3 {“object”:“[2]”,“score”:“[0.9917739629745483]”}