Java 类名:com.alibaba.alink.operator.batch.recommendation.AlsUsersPerItemRecommBatchOp
Python 类名:AlsUsersPerItemRecommBatchOp
使用ALS (Alternating Lease Square)model 为item 推荐users。这里的ALS模型可以是隐式模型,也可以是显式模型,输出格式是MTable。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
itemCol | Item列列名 | Item列列名 | String | ✓ | ||
recommCol | 推荐结果列名 | 推荐结果列名 | String | ✓ | ||
excludeKnown | 排除已知的关联 | 推荐结果中是否排除训练数据中已知的关联 | Boolean | false | ||
initRecommCol | 初始推荐列列名 | 初始推荐列列名 | String | 所选列类型为 [M_TABLE, STRING] | null | |
k | 推荐TOP数量 | 推荐TOP数量 | Integer | 10 | ||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df_data = pd.DataFrame([ [1, 1, 0.6], [2, 2, 0.8], [2, 3, 0.6], [4, 1, 0.6], [4, 2, 0.3], [4, 3, 0.4], ]) data = BatchOperator.fromDataframe(df_data, schemaStr='user bigint, item bigint, rating double') als = AlsTrainBatchOp().setUserCol("user").setItemCol("item").setRateCol("rating") \ .setNumIter(10).setRank(10).setLambda(0.01) model = als.linkFrom(data) predictor = AlsUsersPerItemRecommBatchOp() \ .setItemCol("item").setRecommCol("rec").setK(1).setReservedCols(["item"]) predictor.linkFrom(model, data).print();
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.recommendation.AlsTrainBatchOp; import com.alibaba.alink.operator.batch.recommendation.AlsUsersPerItemRecommBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class AlsUsersPerItemRecommBatchOpTest { @Test public void testAlsUsersPerItemRecommBatchOp() throws Exception { List <Row> df_data = Arrays.asList( Row.of(1, 1, 0.6), Row.of(2, 2, 0.8), Row.of(2, 3, 0.6), Row.of(4, 1, 0.6), Row.of(4, 2, 0.3), Row.of(4, 3, 0.4) ); BatchOperator <?> data = new MemSourceBatchOp(df_data, "user int, item int, rating double"); BatchOperator <?> als = new AlsTrainBatchOp().setUserCol("user").setItemCol("item").setRateCol("rating") .setNumIter(10).setRank(10).setLambda(0.01); BatchOperator model = als.linkFrom(data); BatchOperator <?> predictor = new AlsUsersPerItemRecommBatchOp() .setItemCol("item").setRecommCol("rec").setK(1).setReservedCols("item"); predictor.linkFrom(model, data).print(); } }
user | rec |
---|---|
1 | {“object”:“[1]”,“rate”:“[0.5796224474906921]”} |
2 | {“object”:“[2]”,“rate”:“[0.7668506503105164]”} |
3 | {“object”:“[2]”,“rate”:“[0.5810791850090027]”} |
1 | {“object”:“[1]”,“rate”:“[0.5796224474906921]”} |
2 | {“object”:“[2]”,“rate”:“[0.7668506503105164]”} |
3 | {“object”:“[2]”,“rate”:“[0.5810791850090027]”} |