Java 类名:com.alibaba.alink.operator.batch.recommendation.ItemCfRateRecommBatchOp
Python 类名:ItemCfRateRecommBatchOp
ItemCF 打分是使用ItemCF模型,于预测user对item的评分。
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | 
|---|---|---|---|---|---|---|
| itemCol | Item列列名 | Item列列名 | String | ✓ | ||
| recommCol | 推荐结果列名 | 推荐结果列名 | String | ✓ | ||
| userCol | User列列名 | User列列名 | String | ✓ | ||
| reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 | 
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df_data = pd.DataFrame([
    [1, 1, 0.6],
    [2, 2, 0.8],
    [2, 3, 0.6],
    [4, 1, 0.6],
    [4, 2, 0.3],
    [4, 3, 0.4],
])
data = BatchOperator.fromDataframe(df_data, schemaStr='user bigint, item bigint, rating double')
model = ItemCfTrainBatchOp()\
    .setUserCol("user")\
    .setItemCol("item")\
    .setRateCol("rating").linkFrom(data);
predictor = ItemCfRateRecommBatchOp()\
    .setUserCol("user")\
    .setItemCol("item")\
    .setRecommCol("prediction_result");
predictor.linkFrom(model, data).print()
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.recommendation.ItemCfRateRecommBatchOp;
import com.alibaba.alink.operator.batch.recommendation.ItemCfTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class ItemCfRateRecommBatchOpTest {
	@Test
	public void testItemCfRateRecommBatchOp() throws Exception {
		List <Row> df_data = Arrays.asList(
			Row.of(1, 1, 0.6),
			Row.of(2, 2, 0.8),
			Row.of(2, 3, 0.6),
			Row.of(4, 1, 0.6),
			Row.of(4, 2, 0.3),
			Row.of(4, 3, 0.4)
		);
		BatchOperator <?> data = new MemSourceBatchOp(df_data, "user int, item int, rating double");
		BatchOperator <?> model = new ItemCfTrainBatchOp()
			.setUserCol("user")
			.setItemCol("item")
			.setRateCol("rating").linkFrom(data);
		BatchOperator <?> predictor = new ItemCfRateRecommBatchOp()
			.setUserCol("user")
			.setItemCol("item")
			.setRecommCol("prediction_result");
		predictor.linkFrom(model, data).print();
	}
}
| user | item | rating | prediction_result | 
|---|---|---|---|
| 1 | 1 | 0.6000 | 0.0000 | 
| 2 | 2 | 0.8000 | 0.6000 | 
| 2 | 3 | 0.6000 | 0.8000 | 
| 4 | 1 | 0.6000 | 0.3612 | 
| 4 | 2 | 0.3000 | 0.4406 | 
| 4 | 3 | 0.4000 | 0.3861 |