Java 类名:com.alibaba.alink.operator.batch.recommendation.NegativeItemSamplingBatchOp
Python 类名:NegativeItemSamplingBatchOp
当给定user-item pair数据的时候,为数据生成若干负样本数据,构成训练数据。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
samplingFactor | 采样因子 | 采样因子 | Integer | 3 |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df_data = pd.DataFrame([ [1, 1], [2, 2], [2, 3], [4, 1], [4, 2], [4, 3], ]) data = BatchOperator.fromDataframe(df_data, schemaStr='user bigint, item bigint') NegativeItemSamplingBatchOp().linkFrom(data).print()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.recommendation.NegativeItemSamplingBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class NegativeItemSamplingBatchOpTest { @Test public void testNegativeItemSamplingBatchOp() throws Exception { List <Row> df_data = Arrays.asList( Row.of(1, 1), Row.of(2, 2), Row.of(2, 3), Row.of(4, 1), Row.of(4, 2), Row.of(4, 3) ); BatchOperator <?> data = new MemSourceBatchOp(df_data, "user int, item int"); new NegativeItemSamplingBatchOp().linkFrom(data).print(); } }
user | item | label |
---|---|---|
2 | 1 | 0 |
1 | 3 | 0 |
4 | 1 | 1 |
4 | 2 | 1 |
1 | 3 | 0 |
2 | 1 | 0 |
2 | 1 | 0 |
4 | 3 | 1 |
2 | 2 | 1 |
2 | 3 | 1 |
2 | 1 | 0 |
1 | 1 | 1 |
2 | 1 | 0 |
1 | 3 | 0 |
2 | 1 | 0 |