Java 类名:com.alibaba.alink.operator.batch.sink.AppendModelStreamFileSinkBatchOp
Python 类名:AppendModelStreamFileSinkBatchOp
将模型按照给定的时间戳,插入模型流。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
filePath | 文件路径 | 文件路径 | String | ✓ | ||
modelTime | 批模型时间戳 | 模型时间戳。默认当前时间。 使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null | ||
numFiles | 文件数目 | 文件数目 | Integer | 1 | ||
numKeepModel | 保存模型的数目 | 实时写出模型的数目上限 | Integer | 2147483647 |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ [1.0, "A", 0, 0, 0, 1.0], [2.0, "B", 1, 1, 0, 2.0], [3.0, "C", 2, 2, 1, 3.0], [4.0, "D", 3, 3, 1, 4.0] ]) input = BatchOperator.fromDataframe(df, schemaStr='f0 double, f1 string, f2 int, f3 int, label int, reg_label double') rfOp = RandomForestTrainBatchOp()\ .setLabelCol("reg_label")\ .setFeatureCols(["f0", "f1", "f2", "f3"])\ .setFeatureSubsamplingRatio(0.5)\ .setSubsamplingRatio(1.0)\ .setNumTreesOfInfoGain(1)\ .setNumTreesOfInfoGain(1)\ .setNumTreesOfInfoGainRatio(1)\ .setCategoricalCols(["f1"]) modelStream = AppendModelStreamFileSinkBatchOp()\ .setFilePath("/tmp/random_forest_model_stream")\ .setNumKeepModel(10) rfOp.linkFrom(input).link(modelStream) BatchOperator.execute()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.classification.RandomForestTrainBatchOp; import com.alibaba.alink.operator.batch.sink.AppendModelStreamFileSinkBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import org.junit.Test; import java.util.Arrays; public class AppendModelStreamFileSinkBatchOpTest { @Test public void testAppendModelStreamFileSinkBatchOp() throws Exception { Row[] rows = new Row[] { Row.of(1.0, "A", 0L, 0, 0, 1.0), Row.of(2.0, "B", 1L, 1, 0, 2.0), Row.of(3.0, "C", 2L, 2, 1, 3.0), Row.of(4.0, "D", 3L, 3, 1, 4.0) }; String[] colNames = new String[] {"f0", "f1", "f2", "f3", "label", "reg_label"}; String labelColName = colNames[4]; MemSourceBatchOp input = new MemSourceBatchOp( Arrays.asList(rows), new String[] {"f0", "f1", "f2", "f3", "label", "reg_label"} ); RandomForestTrainBatchOp rfOp = new RandomForestTrainBatchOp() .setLabelCol(labelColName) .setFeatureCols(colNames[0], colNames[1], colNames[2], colNames[3]) .setFeatureSubsamplingRatio(0.5) .setSubsamplingRatio(1.0) .setNumTreesOfInfoGain(1) .setNumTreesOfInfoGain(1) .setNumTreesOfInfoGainRatio(1) .setCategoricalCols(colNames[1]); rfOp.linkFrom(input).link( new AppendModelStreamFileSinkBatchOp() .setFilePath("/tmp/random_forest_model_stream") .setNumKeepModel(10) ); BatchOperator.execute(); } }