Java 类名:com.alibaba.alink.operator.stream.dataproc.ImputerPredictStreamOp
Python 类名:ImputerPredictStreamOp
数据缺失值填充处理,流式预测组件
运行时需要指定缺失值模型,由ImputerTrainBatchOp产生。缺失值填充的4种策略,即最大值、最小值、均值、指定数值,在生成缺失值模型时指定。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
outputCols | 输出结果列列名数组 | 输出结果列列名数组,可选,默认null | String[] | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 | ||
modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | ||
modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | ||
modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df_data = pd.DataFrame([ ["a", 10.0, 100], ["b", -2.5, 9], ["c", 100.2, 1], ["d", -99.9, 100], ["a", 1.4, 1], ["b", -2.2, 9], ["c", 100.9, 1], [None, None, None] ]) colnames = ["col1", "col2", "col3"] selectedColNames = ["col2", "col3"] inOp = BatchOperator.fromDataframe(df_data, schemaStr='col1 string, col2 double, col3 double') # train trainOp = ImputerTrainBatchOp()\ .setSelectedCols(selectedColNames) model = trainOp.linkFrom(inOp) # batch predict predictOp = ImputerPredictBatchOp() predictOp.linkFrom(model, inOp).print() # stream predict sinOp = StreamOperator.fromDataframe(df_data, schemaStr='col1 string, col2 double, col3 double') predictStreamOp = ImputerPredictStreamOp(model) predictStreamOp.linkFrom(sinOp).print() StreamOperator.execute()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.dataproc.ImputerPredictBatchOp; import com.alibaba.alink.operator.batch.dataproc.ImputerTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.dataproc.ImputerPredictStreamOp; import com.alibaba.alink.operator.stream.source.MemSourceStreamOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class ImputerPredictStreamOpTest { @Test public void testImputerPredictStreamOp() throws Exception { List <Row> df_data = Arrays.asList( Row.of("a", 10.0, 100), Row.of("b", -2.5, 9), Row.of("c", 100.2, 1), Row.of("d", -99.9, 100), Row.of("a", 1.4, 1), Row.of("b", -2.2, 9), Row.of("c", 100.9, 1), Row.of(null, null, null) ); String[] selectedColNames = new String[] {"col2", "col3"}; BatchOperator <?> inOp = new MemSourceBatchOp(df_data, "col1 string, col2 double, col3 int"); BatchOperator <?> trainOp = new ImputerTrainBatchOp() .setSelectedCols(selectedColNames); BatchOperator model = trainOp.linkFrom(inOp); BatchOperator <?> predictOp = new ImputerPredictBatchOp(); predictOp.linkFrom(model, inOp).print(); StreamOperator <?> sinOp = new MemSourceStreamOp(df_data, "col1 string, col2 double, col3 int"); StreamOperator <?> predictStreamOp = new ImputerPredictStreamOp(model); predictStreamOp.linkFrom(sinOp).print(); StreamOperator.execute(); } }
col1 | col2 | col3 |
---|---|---|
a | 10.000000 | 100 |
b | -2.500000 | 9 |
c | 100.200000 | 1 |
d | -99.900000 | 100 |
a | 1.400000 | 1 |
b | -2.200000 | 9 |
c | 100.900000 | 1 |
null | 15.414286 | 31 |