Java 类名:com.alibaba.alink.operator.batch.dataproc.ImputerTrainBatchOp
Python 类名:ImputerTrainBatchOp
数据缺失值模型训练
缺失值填充支持4种策略,最大值、最小值、均值、指定数值。当策略为指定数值时,需要设置参数fillValue。
模型生成后处理其他数据参考ImputerPredictBatchOp
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
selectedCols | 选择的列名 | 计算列对应的列名列表 | String[] | ✓ | 所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT] | |
fillValue | 填充缺失值 | 自定义的填充值。当strategy为value时,读取fillValue的值 | String | null | ||
strategy | 缺失值填充规则 | 缺失值填充的规则,支持mean,max,min或者value。选择value时,需要读取fillValue的值 | String | “MEAN”, “MIN”, “MAX”, “VALUE” | “MEAN” |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df_data = pd.DataFrame([ ["a", 10.0, 100], ["b", -2.5, 9], ["c", 100.2, 1], ["d", -99.9, 100], ["a", 1.4, 1], ["b", -2.2, 9], ["c", 100.9, 1], [None, None, None] ]) colnames = ["col1", "col2", "col3"] selectedColNames = ["col2", "col3"] inOp = BatchOperator.fromDataframe(df_data, schemaStr='col1 string, col2 double, col3 double') # train trainOp = ImputerTrainBatchOp()\ .setSelectedCols(selectedColNames) model = trainOp.linkFrom(inOp) # batch predict predictOp = ImputerPredictBatchOp() predictOp.linkFrom(model, inOp).print() # stream predict sinOp = StreamOperator.fromDataframe(df_data, schemaStr='col1 string, col2 double, col3 double') predictStreamOp = ImputerPredictStreamOp(model) predictStreamOp.linkFrom(sinOp).print() StreamOperator.execute()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.dataproc.ImputerPredictBatchOp; import com.alibaba.alink.operator.batch.dataproc.ImputerTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.dataproc.ImputerPredictStreamOp; import com.alibaba.alink.operator.stream.source.MemSourceStreamOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class ImputerTrainBatchOpTest { @Test public void testImputerTrainBatchOp() throws Exception { List <Row> df_data = Arrays.asList( Row.of("a", 10.0, 100), Row.of("b", -2.5, 9), Row.of("c", 100.2, 1), Row.of("d", -99.9, 100), Row.of("a", 1.4, 1), Row.of("b", -2.2, 9), Row.of("c", 100.9, 1), Row.of(null, null, null) ); String[] selectedColNames = new String[] {"col2", "col3"}; BatchOperator <?> inOp = new MemSourceBatchOp(df_data, "col1 string, col2 double, col3 int"); BatchOperator <?> trainOp = new ImputerTrainBatchOp() .setSelectedCols(selectedColNames); BatchOperator model = trainOp.linkFrom(inOp); BatchOperator <?> predictOp = new ImputerPredictBatchOp(); predictOp.linkFrom(model, inOp).print(); StreamOperator <?> sinOp = new MemSourceStreamOp(df_data, "col1 string, col2 double, col3 int"); StreamOperator <?> predictStreamOp = new ImputerPredictStreamOp(model); predictStreamOp.linkFrom(sinOp).print(); StreamOperator.execute(); } }
col1 | col2 | col3 |
---|---|---|
a | 10.000000 | 100 |
b | -2.500000 | 9 |
c | 100.200000 | 1 |
d | -99.900000 | 100 |
a | 1.400000 | 1 |
b | -2.200000 | 9 |
c | 100.900000 | 1 |
null | 15.414286 | 31 |