归一化批预测 (MinMaxScalerPredictBatchOp)

Java 类名:com.alibaba.alink.operator.batch.dataproc.MinMaxScalerPredictBatchOp

Python 类名:MinMaxScalerPredictBatchOp

功能介绍

数据归一化预测组件

将数据归一到minValue和maxValue之间,value最终结果为 (value - min) / (max - min) * (maxValue - minValue) + minValue,最终结果的范围为[minValue, maxValue]。

minValue和maxValue由用户指定,默认为0和1。

需要加载由MinMaxScalerTrainBatchOp训练的模型

参数说明

名称 中文名称 描述 类型 是否必须? 取值范围 默认值
modelFilePath 模型的文件路径 模型的文件路径 String null
outputCols 输出结果列列名数组 输出结果列列名数组,可选,默认null String[] null
numThreads 组件多线程线程个数 组件多线程线程个数 Integer 1

代码示例

Python 代码

from pyalink.alink import *

import pandas as pd

useLocalEnv(1)

df = pd.DataFrame([
            ["a", 10.0, 100],
            ["b", -2.5, 9],
            ["c", 100.2, 1],
            ["d", -99.9, 100],
            ["a", 1.4, 1],
            ["b", -2.2, 9],
            ["c", 100.9, 1]
])
             
colnames = ["col1", "col2", "col3"]
selectedColNames = ["col2", "col3"]


inOp = BatchOperator.fromDataframe(df, schemaStr='col1 string, col2 double, col3 long')
         

# train
trainOp = MinMaxScalerTrainBatchOp()\
           .setSelectedCols(selectedColNames)

trainOp.linkFrom(inOp)

# batch predict
predictOp = MinMaxScalerPredictBatchOp()
predictOp.linkFrom(trainOp, inOp).print()


Java 代码

import org.apache.flink.types.Row;

import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.dataproc.MinMaxScalerPredictBatchOp;
import com.alibaba.alink.operator.batch.dataproc.MinMaxScalerTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;

import java.util.Arrays;
import java.util.List;

public class MinMaxScalerPredictBatchOpTest {
	@Test
	public void testMinMaxScalerPredictBatchOp() throws Exception {
		List <Row> df = Arrays.asList(
			Row.of("a", 10.0, 100),
			Row.of("b", -2.5, 9),
			Row.of("c", 100.2, 1),
			Row.of("d", -99.9, 100),
			Row.of("a", 1.4, 1),
			Row.of("b", -2.2, 9),
			Row.of("c", 100.9, 1)
		);

		String[] selectedColNames = new String[] {"col2", "col3"};
		BatchOperator <?> inOp = new MemSourceBatchOp(df, "col1 string, col2 double, col3 int");
		BatchOperator <?> trainOp = new MinMaxScalerTrainBatchOp()
			.setSelectedCols(selectedColNames);
		trainOp.linkFrom(inOp);
		BatchOperator <?> predictOp = new MinMaxScalerPredictBatchOp();
		predictOp.linkFrom(trainOp, inOp).print();
	}
}

运行结果

col1 col2 col3
a 0.5473 1.0000
b 0.4851 0.0808
c 0.9965 0.0000
d 0.0000 1.0000
a 0.5045 0.0000
b 0.4866 0.0808
c 1.0000 0.0000