Java 类名:com.alibaba.alink.operator.batch.dataproc.AggLookupBatchOp
Python 类名:AggLookupBatchOp
需要查找多个值,并统计结果的总和、平均值、最大最小值或拼接查询结果时,可以使用聚合查找,该组件有两个输入,依次是模型数据表和原始数据表。模型数据有两列,依次是String类型和DenseVector类型,原始数据有任意行和列,每列都是String类型。原始数据默认使用空格作为单词的分隔符。
在机器学习中,想要使用embedding结果时,可以用该组件进行数据处理和特征生成,例如加载训练好的词向量模型,对文本进行向量化和特征生成。在下面例子中,modelOp是一个词向量字典,inOp是三条英文句子,在该例子中,输出是拼接、简单求和、平均等方法得到的句子特征向量。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
clause | 运算语句 | 运算语句 | String | ✓ | ||
delimiter | 分隔符 | 用来分割字符串 | String | “ ” | ||
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ ["the quality of the word vectors increases"], ["amount of the training data increases"], ["the training speed is significantly improved"] ]) inOp = BatchOperator.fromDataframe(df, schemaStr='sentence string') df2 = pd.DataFrame([ ["the", "0.6343,0.8561,0.1249,0.4701"], ["training", "0.2753,0.2444,0.3699,0.6048"], ["of", "0.3160,0.3675,0.1649,0.4116"], ["increases", "1.0372,0.6092,0.1050,0.2630"], ["word", "0.9911,0.6338,0.4570,0.8451"], ["vectors", "0.8780,0.4500,0.5455,0.7495"], ["speed", "0.9504,0.3168,0.7484,0.6965"], ["significantly", "-0.0465,0.6597,0.0906,0.7137"], ["quality", "0.9745,0.7521,0.8874,0.5192"], ["is", "0.8221,0.0487,-0.0065,0.4088"], ["improved", "0.1910,0.0723,0.8216,0.4367"], ["data", "0.8985,0.0117,0.8083,0.9636"], ["amount", "0.9786,0.1470,0.7385,0.8856"] ]) modelOp = BatchOperator.fromDataframe(df2, schemaStr="id string, vec string") AggLookupBatchOp() \ .setClause("CONCAT(sentence,2) as concat, AVG(sentence) as avg, SUM(sentence) as sum,MAX(sentence) as max,MIN(sentence) as min") \ .setDelimiter(" ") \ .setReservedCols([]) \ .linkFrom(modelOp, inOp) \ .print()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.dataproc.AggLookupBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class AggLookupBatchOpTest { @Test public void testAggLookupBatchOp() throws Exception { List <Row> df = Arrays.asList( Row.of("the quality of the word vectors increases"), Row.of("amount of the training data increases"), Row.of("the training speed is significantly improved") ); BatchOperator <?> inOp = new MemSourceBatchOp(df, "sentence string"); List <Row> df2 = Arrays.asList( Row.of("the", "0.6343,0.8561,0.1249,0.4701"), Row.of("training", "0.2753,0.2444,0.3699,0.6048"), Row.of("of", "0.3160,0.3675,0.1649,0.4116"), Row.of("increases", "1.0372,0.6092,0.1050,0.2630"), Row.of("word", "0.9911,0.6338,0.4570,0.8451"), Row.of("vectors", "0.8780,0.4500,0.5455,0.7495"), Row.of("speed", "0.9504,0.3168,0.7484,0.6965"), Row.of("significantly", "-0.0465,0.6597,0.0906,0.7137"), Row.of("quality", "0.9745,0.7521,0.8874,0.5192"), Row.of("is", "0.8221,0.0487,-0.0065,0.4088"), Row.of("improved", "0.1910,0.0723,0.8216,0.4367"), Row.of("data", "0.8985,0.0117,0.8083,0.9636"), Row.of("amount", "0.9786,0.1470,0.7385,0.8856") ); BatchOperator <?> modelOp = new MemSourceBatchOp(df2, "id string, vec string"); AggLookupBatchOp aggLookupBatchOp = new AggLookupBatchOp() .setClause( "CONCAT(sentence,2) as concat, AVG(sentence) as avg, SUM(sentence) as sum,MAX(sentence) as max,MIN(sentence) " + "as min") .setDelimiter(" ") .linkFrom(modelOp, inOp); aggLookupBatchOp.select(new String[] {"e0"}) .print(); aggLookupBatchOp.select(new String[] {"e1", "e2", "e3", "e4"}) .print(); } }
concat |
---|
0.6343 0.8561 0.1249 0.4701 0.9745 0.7521 0.8874 0.5192 |
0.9786 0.147 0.7385 0.8856 0.316 0.3675 0.1649 0.4116 |
0.6343 0.8561 0.1249 0.4701 0.2753 0.2444 0.3699 0.6048 |
avg | sum | max | min |
---|---|---|---|
0.7807 0.6464 0.3442 0.5326 | 5.4654 4.5248 2.4096 3.7286 | 1.0372 0.8561 0.8874 0.8451 | 0.316 0.3675 0.105 0.263 |
0.6899 0.3726 0.3852 0.5997 | 4.1399 2.2359 2.3115 3.5987 | 1.0372 0.8561 0.8083 0.9636 | 0.2753 0.0117 0.105 0.263 |
0.4710 0.3663 0.3581 0.5550 | 2.8266 2.1980 2.1489 3.3306 | 0.9504 0.8561 0.8216 0.7137 | -0.0465 0.0487 -0.0065 0.4088 |