Java 类名:com.alibaba.alink.operator.batch.dataproc.SampleWithSizeBatchOp
Python 类名:SampleWithSizeBatchOp
对数据按个数进行随机抽样,每个样本都以相同的概率被抽到。
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
|---|---|---|---|---|---|---|
| size | 采样个数 | 采样个数 | Integer | ✓ | ||
| withReplacement | 是否放回 | 是否有放回的采样,默认不放回 | Boolean | false |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ ["0,0,0"], ["0.1,0.1,0.1"], ["0.2,0.2,0.2"], ["9,9,9"], ["9.1,9.1,9.1"], ["9.2,9.2,9.2"] ]) inOp = BatchOperator.fromDataframe(df, schemaStr='Y string') sampleOp = SampleWithSizeBatchOp() \ .setSize(2) \ .setWithReplacement(False) inOp.link(sampleOp).print()
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.dataproc.SampleWithSizeBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class SampleWithSizeBatchOpTest {
@Test
public void testSampleWithSizeBatchOp() throws Exception {
List <Row> df = Arrays.asList(
Row.of("0,0,0"),
Row.of("0.1,0.1,0.1"),
Row.of("0.2,0.2,0.2"),
Row.of("9,9,9"),
Row.of("9.1,9.1,9.1"),
Row.of("9.2,9.2,9.2")
);
BatchOperator <?> inOp = new MemSourceBatchOp(df, "Y string");
BatchOperator <?> sampleOp = new SampleWithSizeBatchOp()
.setSize(2)
.setWithReplacement(false);
inOp.link(sampleOp).print();
}
}
| Y |
|---|
| 0,0,0 |
| 0.2,0.2,0.2 |