Java 类名:com.alibaba.alink.operator.batch.dataproc.WeightSampleBatchOp
Python 类名:WeightSampleBatchOp
本算子是按照数据点的权重对数据按照比例进行加权采样,权重越大的数据点被采样的可能性越大。
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
|---|---|---|---|---|---|---|
| ratio | 采样比例 | 采样率,范围为[0, 1] | Double | ✓ | 0.0 <= x <= 1.0 | |
| weightCol | 权重列名 | 权重列对应的列名 | String | ✓ | 所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT] | |
| withReplacement | 是否放回 | 是否有放回的采样,默认不放回 | Boolean | false |
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
["a", 1.3, 1.1],
["b", 2.5, 0.9],
["c", 100.2, -0.01],
["d", 99.9, 100.9],
["e", 1.4, 1.1],
["f", 2.2, 0.9],
["g", 100.9, -0.01],
["j", 99.5, 100.9],
])
# batch source
inOp = BatchOperator.fromDataframe(df, schemaStr='id string, weight double, value double')
sampleOp = WeightSampleBatchOp() \
.setWeightCol("weight") \
.setRatio(0.5) \
.setWithReplacement(False)
inOp.link(sampleOp).print()
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.dataproc.WeightSampleBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class WeightSampleBatchOpTest {
@Test
public void testWeightSampleBatchOp() throws Exception {
List <Row> df = Arrays.asList(
Row.of("a", 1.3, 1.1),
Row.of("b", 2.5, 0.9),
Row.of("c", 100.2, -0.01),
Row.of("d", 99.9, 100.9),
Row.of("e", 1.4, 1.1),
Row.of("f", 2.2, 0.9),
Row.of("g", 100.9, -0.01),
Row.of("j", 99.5, 100.9)
);
BatchOperator <?> inOp = new MemSourceBatchOp(df, "id string, weight double, value double");
BatchOperator <?> sampleOp = new WeightSampleBatchOp()
.setWeightCol("weight")
.setRatio(0.5)
.setWithReplacement(false);
inOp.link(sampleOp).print();
}
}
| id | weight | value |
|---|---|---|
| g | 100.9000 | -0.0100 |
| d | 99.9000 | 100.9000 |
| c | 100.2000 | -0.0100 |
| j | 99.5000 | 100.9000 |