该文档涉及的组件

加权采样 (WeightSampleBatchOp)

Java 类名:com.alibaba.alink.operator.batch.dataproc.WeightSampleBatchOp

Python 类名:WeightSampleBatchOp

功能介绍

本算子是按照数据点的权重对数据按照比例进行加权采样,权重越大的数据点被采样的可能性越大。

参数说明

名称 中文名称 描述 类型 是否必须? 取值范围 默认值
ratio 采样比例 采样率,范围为[0, 1] Double 0.0 <= x <= 1.0
weightCol 权重列名 权重列对应的列名 String 所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT]
withReplacement 是否放回 是否有放回的采样,默认不放回 Boolean false

代码示例

Python 代码

from pyalink.alink import *

import pandas as pd

useLocalEnv(1)

df = pd.DataFrame([
    ["a", 1.3, 1.1],
    ["b", 2.5, 0.9],
    ["c", 100.2, -0.01],
    ["d", 99.9, 100.9],
    ["e", 1.4, 1.1],
    ["f", 2.2, 0.9],
    ["g", 100.9, -0.01],
    ["j", 99.5, 100.9],
])



# batch source
inOp = BatchOperator.fromDataframe(df, schemaStr='id string, weight double, value double')
sampleOp = WeightSampleBatchOp() \
  .setWeightCol("weight") \
  .setRatio(0.5) \
  .setWithReplacement(False)

inOp.link(sampleOp).print()

Java 代码

import org.apache.flink.types.Row;

import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.dataproc.WeightSampleBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;

import java.util.Arrays;
import java.util.List;

public class WeightSampleBatchOpTest {
	@Test
	public void testWeightSampleBatchOp() throws Exception {
		List <Row> df = Arrays.asList(
			Row.of("a", 1.3, 1.1),
			Row.of("b", 2.5, 0.9),
			Row.of("c", 100.2, -0.01),
			Row.of("d", 99.9, 100.9),
			Row.of("e", 1.4, 1.1),
			Row.of("f", 2.2, 0.9),
			Row.of("g", 100.9, -0.01),
			Row.of("j", 99.5, 100.9)
		);
		BatchOperator <?> inOp = new MemSourceBatchOp(df, "id string, weight double, value double");
		BatchOperator <?> sampleOp = new WeightSampleBatchOp()
			.setWeightCol("weight")
			.setRatio(0.5)
			.setWithReplacement(false);
		inOp.link(sampleOp).print();
	}
}

结果

id weight value
g 100.9000 -0.0100
d 99.9000 100.9000
c 100.2000 -0.0100
j 99.5000 100.9000