Java 类名:com.alibaba.alink.operator.batch.dataproc.MultiStringIndexerPredictBatchOp
Python 类名:MultiStringIndexerPredictBatchOp
多列字符串转换组件,输入的模型数据来自 MultiStringIndexerTrainBatchOp 组件的输出,训练的时候指定多个列,每个列单独编码。
这个组件为批式预测组件,预测时需要指定列名,列名必须与训练时列名相同。如果转换时指定了训练时不存在的列名,会报异常。
支持按照一定的次序编码。如随机、出现频次生序,出现频次降序、字符串生序、字符串降序5种方式。
设置 setStringOrderType 参数时分别对应 random frequency_asc frequency_desc alphabet_asc alphabet_desc。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
selectedCols | 选择的列名 | 计算列对应的列名列表 | String[] | ✓ | 所选列类型为 [INTEGER, LONG, STRING] | |
handleInvalid | 未知token处理策略 | 未知token处理策略。“keep”表示用最大id加1代替, “skip”表示补null, “error”表示抛异常 | String | “KEEP”, “ERROR”, “SKIP” | “KEEP” | |
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
outputCols | 输出结果列列名数组 | 输出结果列列名数组,可选,默认null | String[] | null | ||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ ["football", "apple"], ["football", "banana"], ["football", "banana"], ["basketball", "orange"], ["basketball", "grape"], ["tennis", "grape"], ]) data = BatchOperator.fromDataframe(df, schemaStr='f0 string,f1 string') stringindexer = MultiStringIndexerTrainBatchOp() \ .setSelectedCols(["f0", "f1"]) \ .setStringOrderType("frequency_asc") predictor = MultiStringIndexerPredictBatchOp().setSelectedCols(["f0", "f1"]).setOutputCols(["f0_indexed", "f1_indexed"]) model = stringindexer.linkFrom(data) predictor.linkFrom(model, data).print()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.dataproc.MultiStringIndexerPredictBatchOp; import com.alibaba.alink.operator.batch.dataproc.MultiStringIndexerTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class MultiStringIndexerPredictBatchOpTest { @Test public void testMultiStringIndexerPredictBatchOp() throws Exception { List <Row> df = Arrays.asList( Row.of("football", "apple"), Row.of("football", "banana"), Row.of("football", "banana"), Row.of("basketball", "orange"), Row.of("basketball", "grape"), Row.of("tennis", "grape") ); BatchOperator <?> data = new MemSourceBatchOp(df, "f0 string,f1 string"); BatchOperator <?> stringindexer = new MultiStringIndexerTrainBatchOp() .setSelectedCols("f0", "f1") .setStringOrderType("frequency_asc"); BatchOperator <?> predictor = new MultiStringIndexerPredictBatchOp().setSelectedCols("f0", "f1").setOutputCols( "f0_indexed", "f1_indexed"); BatchOperator model = stringindexer.linkFrom(data); predictor.linkFrom(model, data).print(); } }
f0 | f1 | f0_indexed | f1_indexed |
---|---|---|---|
basketball | orange | 1 | 0 |
football | apple | 2 | 1 |
tennis | grape | 0 | 3 |
football | banana | 2 | 2 |
basketball | grape | 1 | 3 |
football | banana | 2 | 2 |