并行ID化预测 (HugeStringIndexerPredictBatchOp)

Java 类名:com.alibaba.alink.operator.batch.dataproc.HugeStringIndexerPredictBatchOp

Python 类名:HugeStringIndexerPredictBatchOp

功能介绍

提供字符串ID化处理功能,与 StringIndexerPredictBatchOp 功能相同,是其升级版本,模型为分布式存储,提升了运行效率。支持多列同时转换。

由 StringIndexerTrainBatchOp 生成词典模型,将输入数据的字符串转化成词典模型中的ID

对于词典模型中不存在的字符串,提供了三种处理策略,“keep”表示用最大id加1代替, “skip”表示补null, “error”表示抛异常

参数说明

名称 中文名称 描述 类型 是否必须? 取值范围 默认值
selectedCols 选择的列名 计算列对应的列名列表 String[]
handleInvalid 未知token处理策略 未知token处理策略。“keep”表示用最大id加1代替, “skip”表示补null, “error”表示抛异常 String “KEEP”, “ERROR”, “SKIP” “KEEP”
outputCols 输出结果列列名数组 输出结果列列名数组,可选,默认null String[] null
reservedCols 算法保留列名 算法保留列 String[] null

代码示例

Python 代码

from pyalink.alink import *

import pandas as pd

useLocalEnv(1)

df = pd.DataFrame([
    ["football", "apple"],
    ["football", "apple"],
    ["football", "apple"],
    ["basketball", "apple"],
    ["basketball", "apple"],
    ["tennis", "pair"],
    ["tennis", "pair"],
    ["pingpang", "banana"],
    ["pingpang", "banana"],
    ["baseball", "banana"]
])

data = BatchOperator.fromDataframe(df, schemaStr='f0 string, f1 string')

stringindexer = StringIndexerTrainBatchOp()\
    .setSelectedCol("f0")\
    .setSelectedCols(["f1"])\
    .setStringOrderType("alphabet_asc")

model = stringindexer.linkFrom(data)

predictor = HugeStringIndexerPredictBatchOp()\
    .setSelectedCols(["f0", "f1"])\
    .setOutputCols(["f0_indexed", "f1_indexed"])

predictor.linkFrom(model, data).print()

Java 代码

import org.apache.flink.types.Row;

import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;

import java.util.Arrays;
import java.util.List;

public class HugeStringIndexerPredictBatchOpTest {
	@Test
	public void testStringIndexerPredictBatchOp() throws Exception {
		List <Row> df = Arrays.asList(
			Row.of("football", "apple"),
			Row.of("football", "apple"),
			Row.of("football", "apple"),
			Row.of("basketball", "apple"),
			Row.of("basketball", "apple"),
			Row.of("tennis", "pair"),
			Row.of("tennis", "pair"),
			Row.of("pingpang", "banana"),
			Row.of("pingpang", "banana"),
			Row.of("baseball", "banana")
		);
		BatchOperator <?> data = new MemSourceBatchOp(df, "f0 string,f1 string");
		BatchOperator <?> stringindexer = new StringIndexerTrainBatchOp()
			.setSelectedCol("f0")
			.setSelectedCols("f1")
			.setStringOrderType("frequency_asc");
		BatchOperator <?> predictor = new HugeStringIndexerPredictBatchOp().setSelectedCols("f0", "f1")
			.setOutputCols("f0_indexed", "f1_indexed");
		BatchOperator model = stringindexer.linkFrom(data);
		model.lazyPrint(10);
		BatchOperator result = predictor.linkFrom(model, data);
		result.print();
	}
}

运行结果

token token_index
banana 5
football 6
basketball 1
pingpang 2
tennis 3
pair 4
baseball 0
apple 7
f0 f1 f0_indexed f1_indexed
basketball apple 1 7
pingpang banana 2 5
football apple 6 7
tennis pair 3 4
tennis pair 3 4
basketball apple 1 7
football apple 6 7
football apple 6 7
pingpang banana 2 5
baseball banana 0 5