Java 类名:com.alibaba.alink.operator.batch.dataproc.HugeStringIndexerPredictBatchOp
Python 类名:HugeStringIndexerPredictBatchOp
提供字符串ID化处理功能,与 StringIndexerPredictBatchOp 功能相同,是其升级版本,模型为分布式存储,提升了运行效率。支持多列同时转换。
由 StringIndexerTrainBatchOp 生成词典模型,将输入数据的字符串转化成词典模型中的ID
对于词典模型中不存在的字符串,提供了三种处理策略,“keep”表示用最大id加1代替, “skip”表示补null, “error”表示抛异常
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
selectedCols | 选择的列名 | 计算列对应的列名列表 | String[] | ✓ | ||
handleInvalid | 未知token处理策略 | 未知token处理策略。“keep”表示用最大id加1代替, “skip”表示补null, “error”表示抛异常 | String | “KEEP”, “ERROR”, “SKIP” | “KEEP” | |
outputCols | 输出结果列列名数组 | 输出结果列列名数组,可选,默认null | String[] | null | ||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ ["football", "apple"], ["football", "apple"], ["football", "apple"], ["basketball", "apple"], ["basketball", "apple"], ["tennis", "pair"], ["tennis", "pair"], ["pingpang", "banana"], ["pingpang", "banana"], ["baseball", "banana"] ]) data = BatchOperator.fromDataframe(df, schemaStr='f0 string, f1 string') stringindexer = StringIndexerTrainBatchOp()\ .setSelectedCol("f0")\ .setSelectedCols(["f1"])\ .setStringOrderType("alphabet_asc") model = stringindexer.linkFrom(data) predictor = HugeStringIndexerPredictBatchOp()\ .setSelectedCols(["f0", "f1"])\ .setOutputCols(["f0_indexed", "f1_indexed"]) predictor.linkFrom(model, data).print()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class HugeStringIndexerPredictBatchOpTest { @Test public void testStringIndexerPredictBatchOp() throws Exception { List <Row> df = Arrays.asList( Row.of("football", "apple"), Row.of("football", "apple"), Row.of("football", "apple"), Row.of("basketball", "apple"), Row.of("basketball", "apple"), Row.of("tennis", "pair"), Row.of("tennis", "pair"), Row.of("pingpang", "banana"), Row.of("pingpang", "banana"), Row.of("baseball", "banana") ); BatchOperator <?> data = new MemSourceBatchOp(df, "f0 string,f1 string"); BatchOperator <?> stringindexer = new StringIndexerTrainBatchOp() .setSelectedCol("f0") .setSelectedCols("f1") .setStringOrderType("frequency_asc"); BatchOperator <?> predictor = new HugeStringIndexerPredictBatchOp().setSelectedCols("f0", "f1") .setOutputCols("f0_indexed", "f1_indexed"); BatchOperator model = stringindexer.linkFrom(data); model.lazyPrint(10); BatchOperator result = predictor.linkFrom(model, data); result.print(); } }
token | token_index |
---|---|
banana | 5 |
football | 6 |
basketball | 1 |
pingpang | 2 |
tennis | 3 |
pair | 4 |
baseball | 0 |
apple | 7 |
f0 | f1 | f0_indexed | f1_indexed |
---|---|---|---|
basketball | apple | 1 | 7 |
pingpang | banana | 2 | 5 |
football | apple | 6 | 7 |
tennis | pair | 3 | 4 |
tennis | pair | 3 | 4 |
basketball | apple | 1 | 7 |
football | apple | 6 | 7 |
football | apple | 6 | 7 |
pingpang | banana | 2 | 5 |
baseball | banana | 0 | 5 |