Java 类名:com.alibaba.alink.operator.batch.dataproc.StandardScalerTrainBatchOp
Python 类名:StandardScalerTrainBatchOp
标准化是对数据进行按正态化处理的组件
训练过程计算数据的均值和标准差,在预测组件中使用模型结果
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
|---|---|---|---|---|---|---|
| selectedCols | 选择的列名 | 计算列对应的列名列表 | String[] | ✓ | 所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT] | |
| withMean | 是否使用均值 | 是否使用均值,默认使用 | Boolean | true | ||
| withStd | 是否使用标准差 | 是否使用标准差,默认使用 | Boolean | true |
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
["a", 10.0, 100],
["b", -2.5, 9],
["c", 100.2, 1],
["d", -99.9, 100],
["a", 1.4, 1],
["b", -2.2, 9],
["c", 100.9, 1]
])
colnames = ["col1", "col2", "col3"]
selectedColNames = ["col2", "col3"]
inOp = BatchOperator.fromDataframe(df, schemaStr='col1 string, col2 double, col3 long')
# train
trainOp = StandardScalerTrainBatchOp()\
.setSelectedCols(selectedColNames)
trainOp.linkFrom(inOp)
# batch predict
predictOp = StandardScalerPredictBatchOp()
predictOp.linkFrom(trainOp, inOp).print()
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.dataproc.StandardScalerPredictBatchOp;
import com.alibaba.alink.operator.batch.dataproc.StandardScalerTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class StandardScalerTrainBatchOpTest {
@Test
public void testStandardScalerTrainBatchOp() throws Exception {
List <Row> df = Arrays.asList(
Row.of("a", 10.0, 100),
Row.of("b", -2.5, 9),
Row.of("c", 100.2, 1),
Row.of("d", -99.9, 100),
Row.of("a", 1.4, 1),
Row.of("b", -2.2, 9),
Row.of("c", 100.9, 1)
);
String[] selectedColNames = new String[] {"col2", "col3"};
BatchOperator <?> inOp = new MemSourceBatchOp(df, "col1 string, col2 double, col3 int");
BatchOperator <?> trainOp = new StandardScalerTrainBatchOp()
.setSelectedCols(selectedColNames);
trainOp.linkFrom(inOp);
BatchOperator <?> predictOp = new StandardScalerPredictBatchOp();
predictOp.linkFrom(trainOp, inOp).print();
}
}
| col1 | col2 | col3 |
|---|---|---|
| a | -0.0784 | 1.4596 |
| b | -0.2592 | -0.4814 |
| c | 1.2270 | -0.6521 |
| d | -1.6687 | 1.4596 |
| a | -0.2028 | -0.6521 |
| b | -0.2549 | -0.4814 |
| c | 1.2371 | -0.6521 |