标准化流预测 (StandardScalerPredictStreamOp)

Java 类名:com.alibaba.alink.operator.stream.dataproc.StandardScalerPredictStreamOp

Python 类名:StandardScalerPredictStreamOp

功能介绍

  • 标准化流式预测是对数据进行按正态化处理的组件
  • 需要加载StandardScalerTrainBatchOp训练的模型

参数说明

名称 中文名称 描述 类型 是否必须? 取值范围 默认值
modelFilePath 模型的文件路径 模型的文件路径 String null
outputCols 输出结果列列名数组 输出结果列列名数组,可选,默认null String[] null
numThreads 组件多线程线程个数 组件多线程线程个数 Integer 1
modelStreamFilePath 模型流的文件路径 模型流的文件路径 String null
modelStreamScanInterval 扫描模型路径的时间间隔 描模型路径的时间间隔,单位秒 Integer 10
modelStreamStartTime 模型流的起始时间 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) String null

代码示例

Python 代码

from pyalink.alink import *

import pandas as pd

useLocalEnv(1)

df = pd.DataFrame([
            ["a", 10.0, 100],
            ["b", -2.5, 9],
            ["c", 100.2, 1],
            ["d", -99.9, 100],
            ["a", 1.4, 1],
            ["b", -2.2, 9],
            ["c", 100.9, 1]
])
             
colnames = ["col1", "col2", "col3"]
selectedColNames = ["col2", "col3"]

inOp = BatchOperator.fromDataframe(df, schemaStr='col1 string, col2 double, col3 long')
   
# train
trainOp = StandardScalerTrainBatchOp()\
           .setSelectedCols(selectedColNames)

trainOp.linkFrom(inOp)

# batch predict
predictOp = StandardScalerPredictBatchOp()
predictOp.linkFrom(trainOp, inOp).print()

# stream predict
sinOp = StreamOperator.fromDataframe(df, schemaStr='col1 string, col2 double, col3 long')

predictStreamOp = StandardScalerPredictStreamOp(trainOp)
predictStreamOp.linkFrom(sinOp).print()

StreamOperator.execute()

Java 代码

import org.apache.flink.types.Row;

import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.dataproc.StandardScalerPredictBatchOp;
import com.alibaba.alink.operator.batch.dataproc.StandardScalerTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.stream.StreamOperator;
import com.alibaba.alink.operator.stream.dataproc.StandardScalerPredictStreamOp;
import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;
import org.junit.Test;

import java.util.Arrays;
import java.util.List;

public class StandardScalerPredictStreamOpTest {
	@Test
	public void testStandardScalerPredictStreamOp() throws Exception {
		List <Row> df = Arrays.asList(
			Row.of("a", 10.0, 100),
			Row.of("b", -2.5, 9),
			Row.of("c", 100.2, 1),
			Row.of("d", -99.9, 100),
			Row.of("a", 1.4, 1),
			Row.of("b", -2.2, 9),
			Row.of("c", 100.9, 1)
		);

		String[] selectedColNames = new String[] {"col2", "col3"};
		BatchOperator <?> inOp = new MemSourceBatchOp(df, "col1 string, col2 double, col3 int");
		BatchOperator <?> trainOp = new StandardScalerTrainBatchOp()
			.setSelectedCols(selectedColNames);
		trainOp.linkFrom(inOp);
		BatchOperator <?> predictOp = new StandardScalerPredictBatchOp();
		predictOp.linkFrom(trainOp, inOp).print();
		StreamOperator <?> sinOp = new MemSourceStreamOp(df, "col1 string, col2 double, col3 int");
		StreamOperator <?> predictStreamOp = new StandardScalerPredictStreamOp(trainOp);
		predictStreamOp.linkFrom(sinOp).print();
		StreamOperator.execute();
	}
}

运行结果

col1 col2 col3
a -0.0784 1.4596
b -0.2592 -0.4814
c 1.2270 -0.6521
d -1.6687 1.4596
a -0.2028 -0.6521
b -0.2549 -0.4814
c 1.2371 -0.6521
col1 col2 col3
b -0.2592 -0.4814
d -1.6687 1.4596
c 1.2270 -0.6521
b -0.2549 -0.4814
c 1.2371 -0.6521
a -0.2028 -0.6521
a -0.0784 1.4596