Java 类名:com.alibaba.alink.operator.stream.dataproc.StratifiedSampleStreamOp
Python 类名:StratifiedSampleStreamOp
分层采样组件。给定输入数据,本算法根据用户指定的不同类别的采样比例进行随机采样。
当输入数据的所有类别均已通过ratios指定时,算法通过ratios中的比例进行采样; 当输入数据中存在类别没有通过ratios指定时,算法将使用ratio参数来采样。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
strataCol | 分层列 | 分层列 | String | ✓ | ||
strataRatios | 采用比率 | 采用比率, eg, a:0.1,b:0.3 | String | ✓ | ||
strataRatio | 采用比率 | 采用比率 | Double | -1.0 |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df_data = pd.DataFrame([ ['a',0.0,0.0], ['a',0.2,0.1], ['b',0.2,0.8], ['b',9.5,9.7], ['b',9.1,9.6], ['b',9.3,9.9] ]) streamData = StreamOperator.fromDataframe(df_data, schemaStr='x1 string, x2 double, x3 double') sampleStreamOp = StratifiedSampleStreamOp()\ .setStrataCol("x1")\ .setStrataRatios("a:0.5,b:0.5") sampleStreamOp.linkFrom(streamData).print() StreamOperator.execute()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.dataproc.StratifiedSampleStreamOp; import com.alibaba.alink.operator.stream.source.MemSourceStreamOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class StratifiedSampleStreamOpTest { @Test public void testStratifiedSampleStreamOp() throws Exception { List <Row> df_data = Arrays.asList( Row.of("a", 0.0, 0.0), Row.of("a", 0.2, 0.1), Row.of("b", 0.2, 0.8), Row.of("b", 9.5, 9.7), Row.of("b", 9.1, 9.6), Row.of("b", 9.3, 9.9) ); StreamOperator <?> streamData = new MemSourceStreamOp(df_data, "x1 string, x2 double, x3 double"); StreamOperator <?> sampleStreamOp = new StratifiedSampleStreamOp() .setStrataCol("x1") .setStrataRatios("a:0.5,b:0.5"); sampleStreamOp.linkFrom(streamData).print(); StreamOperator.execute(); } }
x1 | x2 | x3 |
---|---|---|
b | 9.3 | 9.9 |
a | 0.0 | 0.0 |
b | 0.2 | 0.8 |