Java 类名:com.alibaba.alink.operator.stream.dataproc.MultiStringIndexerPredictStreamOp
Python 类名:MultiStringIndexerPredictStreamOp
多列字符串转换组件,输入的模型数据来自 MultiStringIndexerTrainBatchOp 组件的输出,训练的时候指定多个列,每个列单独编码。
这个组件为流式预测组件,预测时需要指定列名,列名必须与训练时列名相同。如果转换时指定了训练时不存在的列名,会报异常。
支持按照一定的次序编码。如随机、出现频次生序,出现频次降序、字符串生序、字符串降序5种方式。
设置 setStringOrderType 参数时分别对应 random frequency_asc frequency_desc alphabet_asc alphabet_desc。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
selectedCols | 选择的列名 | 计算列对应的列名列表 | String[] | ✓ | 所选列类型为 [INTEGER, LONG, STRING] | |
handleInvalid | 未知token处理策略 | 未知token处理策略。“keep”表示用最大id加1代替, “skip”表示补null, “error”表示抛异常 | String | “KEEP”, “ERROR”, “SKIP” | “KEEP” | |
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
outputCols | 输出结果列列名数组 | 输出结果列列名数组,可选,默认null | String[] | null | ||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 | ||
modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | ||
modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | ||
modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df_data = pd.DataFrame([ ["football", "apple"], ["football", "banana"], ["football", "banana"], ["basketball", "orange"], ["basketball", "grape"], ["tennis", "grape"], ]) data = BatchOperator.fromDataframe(df_data, schemaStr='f0 string,f1 string') stream_data = StreamOperator.fromDataframe(df_data, schemaStr='f0 string,f1 string') stringindexer = MultiStringIndexerTrainBatchOp() \ .setSelectedCols(["f0", "f1"]) \ .setStringOrderType("frequency_asc") model = stringindexer.linkFrom(data) predictor = MultiStringIndexerPredictStreamOp(model)\ .setSelectedCols(["f0", "f1"])\ .setOutputCols(["f0_indexed", "f1_indexed"]) predictor.linkFrom(stream_data).print() StreamOperator.execute()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.dataproc.MultiStringIndexerTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.dataproc.MultiStringIndexerPredictStreamOp; import com.alibaba.alink.operator.stream.source.MemSourceStreamOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class MultiStringIndexerPredictStreamOpTest { @Test public void testMultiStringIndexerPredictStreamOp() throws Exception { List <Row> df_data = Arrays.asList( Row.of("football", "apple"), Row.of("football", "banana"), Row.of("football", "banana"), Row.of("basketball", "orange"), Row.of("basketball", "grape"), Row.of("tennis", "grape") ); BatchOperator <?> data = new MemSourceBatchOp(df_data, "f0 string,f1 string"); StreamOperator <?> stream_data = new MemSourceStreamOp(df_data, "f0 string,f1 string"); BatchOperator <?> stringindexer = new MultiStringIndexerTrainBatchOp() .setSelectedCols("f0", "f1") .setStringOrderType("frequency_asc"); BatchOperator model = stringindexer.linkFrom(data); StreamOperator <?> predictor = new MultiStringIndexerPredictStreamOp(model) .setSelectedCols("f0", "f1") .setOutputCols("f0_indexed", "f1_indexed"); predictor.linkFrom(stream_data).print(); StreamOperator.execute(); } }
f0 | f1 | f0_indexed | f1_indexed |
---|---|---|---|
basketball | orange | 1 | 0 |
football | apple | 2 | 1 |
tennis | grape | 0 | 3 |
football | banana | 2 | 2 |
basketball | grape | 1 | 3 |
football | banana | 2 | 2 |