该文档涉及的组件

多字段字符串编码训练 (MultiStringIndexerTrainBatchOp)

Java 类名:com.alibaba.alink.operator.batch.dataproc.MultiStringIndexerTrainBatchOp

Python 类名:MultiStringIndexerTrainBatchOp

功能介绍

MultiStringIndexer 训练组件的作用是训练一个模型用于将多列字符串映射为整数,训练的时候指定多个列,每个列单独编码。
支持按照一定的次序编码。如随机、出现频次生序,出现频次降序、字符串生序、字符串降序5种方式。
设置 setStringOrderType 参数时分别对应 random frequency_asc frequency_desc alphabet_asc alphabet_desc。

参数说明

名称 中文名称 描述 类型 是否必须? 取值范围 默认值
selectedCols 选择的列名 计算列对应的列名列表 String[] 所选列类型为 [INTEGER, LONG, STRING]
stringOrderType Token排序方法 Token排序方法 String “RANDOM”, “FREQUENCY_ASC”, “FREQUENCY_DESC”, “ALPHABET_ASC”, “ALPHABET_DESC” “RANDOM”

代码示例

Python 代码

from pyalink.alink import *

import pandas as pd

useLocalEnv(1)

df = pd.DataFrame([
    ["football"],
    ["football"],
    ["football"],
    ["basketball"],
    ["basketball"],
    ["tennis"],
])


data = BatchOperator.fromDataframe(df, schemaStr='f0 string')

stringindexer = MultiStringIndexerTrainBatchOp() \
    .setSelectedCols(["f0"]) \
    .setStringOrderType("frequency_asc")

model = stringindexer.linkFrom(data)
model.print()

Java 代码

import org.apache.flink.types.Row;

import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.dataproc.MultiStringIndexerTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;

import java.util.Arrays;
import java.util.List;

public class MultiStringIndexerTrainBatchOpTest {
	@Test
	public void testMultiStringIndexerTrainBatchOp() throws Exception {
		List <Row> df = Arrays.asList(
			Row.of("football"),
			Row.of("football"),
			Row.of("football"),
			Row.of("basketball"),
			Row.of("basketball"),
			Row.of("tennis")
		);
		BatchOperator <?> data = new MemSourceBatchOp(df, "f0 string");
		BatchOperator <?> stringindexer = new MultiStringIndexerTrainBatchOp()
			.setSelectedCols("f0")
			.setStringOrderType("frequency_asc");
		BatchOperator model = stringindexer.linkFrom(data);
		model.print();
	}
}

运行结果

column_index token token_index
-1 {“selectedCols”:“["f0"]”,“selectedColTypes”:“["VARCHAR"]”} null
0 tennis 0
0 basketball 1
0 football 2