该文档涉及的组件

数据Rebalance (RebalanceBatchOp)

Java 类名:com.alibaba.alink.operator.batch.dataproc.RebalanceBatchOp

Python 类名:RebalanceBatchOp

功能介绍

该组件对数据进行 rebalance。

实现原理

将数据按轮转(round-robin)的方式划分分区,后续每个 worker 处理一个分区,各个分区间负载相等。
可以用于优化数据倾斜带来的性能问题。

参数说明

名称 中文名称 描述 类型 是否必须? 取值范围 默认值

代码示例

Python 代码

from pyalink.alink import *

import pandas as pd

useLocalEnv(1)

df = pd.DataFrame([
       ["0,0,0"],
       ["0.1,0.1,0.1"],
       ["0.2,0.2,0.2"],
       ["9,9,9"],
       ["9.1,9.1,9.1"],
       ["9.2,9.2,9.2"]
])
     
inOp = BatchOperator.fromDataframe(df, schemaStr='Y string')

inOp.link(RebalanceBatchOp()).print()

Java 代码

import org.apache.flink.types.Row;

import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.dataproc.RebalanceBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;

import java.util.Arrays;
import java.util.List;

public class RebalanceBatchOpTest {
	@Test
	public void testRebalanceBatchOp() throws Exception {
		List <Row> df = Arrays.asList(
			Row.of("0,0,0"),
			Row.of("0.1,0.1,0.1"),
			Row.of("0.2,0.2,0.2"),
			Row.of("9,9,9"),
			Row.of("9.1,9.1,9.1"),
			Row.of("9.2,9.2,9.2")
		);
		BatchOperator <?> inOp = new MemSourceBatchOp(df, "Y string");
		inOp.link(new RebalanceBatchOp()).print();
	}
}

运行结果

Y
0,0,0
0.1,0.1,0.1
0.2,0.2,0.2
9,9,9
9.1,9.1,9.1
9.2,9.2,9.2