Java 类名:com.alibaba.alink.operator.batch.dataproc.MinMaxScalerTrainBatchOp
Python 类名:MinMaxScalerTrainBatchOp
数据归一化组件
将数据归一到minValue和maxValue之间,value最终结果为 (value - min) / (max - min) * (maxValue - minValue) + minValue,最终结果的范围为[minValue, maxValue]。
minValue和maxValue由用户指定,默认为0和1。
生成的最大值最小值归一化模型在归一化预处理组件中使用。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
selectedCols | 选择的列名 | 计算列对应的列名列表 | String[] | ✓ | 所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT] | |
max | 归一化的上界 | 归一化的上界 | Double | 1.0 | ||
min | 归一化的下界 | 归一化的下界 | Double | 0.0 |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ ["a", 10.0, 100], ["b", -2.5, 9], ["c", 100.2, 1], ["d", -99.9, 100], ["a", 1.4, 1], ["b", -2.2, 9], ["c", 100.9, 1] ]) colnames = ["col1", "col2", "col3"] selectedColNames = ["col2", "col3"] inOp = BatchOperator.fromDataframe(df, schemaStr='col1 string, col2 double, col3 long') # train trainOp = MinMaxScalerTrainBatchOp()\ .setSelectedCols(selectedColNames) trainOp.linkFrom(inOp) # batch predict predictOp = MinMaxScalerPredictBatchOp() predictOp.linkFrom(trainOp, inOp).print()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.dataproc.MinMaxScalerPredictBatchOp; import com.alibaba.alink.operator.batch.dataproc.MinMaxScalerTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class MinMaxScalerTrainBatchOpTest { @Test public void testMinMaxScalerTrainBatchOp() throws Exception { List <Row> df = Arrays.asList( Row.of("a", 10.0, 100), Row.of("b", -2.5, 9), Row.of("c", 100.2, 1), Row.of("d", -99.9, 100), Row.of("a", 1.4, 1), Row.of("b", -2.2, 9), Row.of("c", 100.9, 1) ); String[] selectedColNames = new String[] {"col2", "col3"}; BatchOperator <?> inOp = new MemSourceBatchOp(df, "col1 string, col2 double, col3 int"); BatchOperator <?> trainOp = new MinMaxScalerTrainBatchOp() .setSelectedCols(selectedColNames); trainOp.linkFrom(inOp); BatchOperator <?> predictOp = new MinMaxScalerPredictBatchOp(); predictOp.linkFrom(trainOp, inOp).print(); } }
col1 | col2 | col3 |
---|---|---|
a | 0.5473 | 1.0000 |
b | 0.4851 | 0.0808 |
c | 0.9965 | 0.0000 |
d | 0.0000 | 1.0000 |
a | 0.5045 | 0.0000 |
b | 0.4866 | 0.0808 |
c | 1.0000 | 0.0000 |