Java 类名:com.alibaba.alink.operator.batch.dataproc.HugeMultiIndexerStringPredictBatchOp
Python 类名:HugeMultiIndexerStringPredictBatchOp
提供ID转换为字符串的功能,与 HugeMultiStringIndexerPredictBatchOp 功能相反。
由 MultiStringIndexerTrainBatchOp 生成词典模型,将输入数据的ID转化成原文。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
selectedCols | 选择的列名 | 计算列对应的列名列表 | String[] | ✓ | 所选列类型为 [LONG] | |
handleInvalid | 未知token处理策略 | 未知token处理策略。“keep”表示用最大id加1代替, “skip”表示补null, “error”表示抛异常 | String | “KEEP”, “ERROR”, “SKIP” | “KEEP” | |
outputCols | 输出结果列列名数组 | 输出结果列列名数组,可选,默认null | String[] | null | ||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ [1, "football", "apple"], [2, "football", "apple"], [3, "football", "apple"], [4, "basketball", "apple"], [5, "basketball", "apple"], [6, "tennis", "pair"], [7, "tennis", "pair"], [8, "pingpang", "banana"], [9, "pingpang", "banana"], [0, "baseball", "banana"] ]) data = BatchOperator.fromDataframe(df, schemaStr='id long, f0 string, f1 string') stringindexer = MultiStringIndexerTrainBatchOp()\ .setSelectedCols(["f0", "f1"])\ .setStringOrderType("frequency_asc") model = stringindexer.linkFrom(data) predictor = HugeMultiStringIndexerPredictBatchOp()\ .setSelectedCols(["f0", "f1"]) result = predictor.linkFrom(model, data) stringPredictor = HugeMultiIndexerStringPredictBatchOp()\ .setSelectedCols(["f0", "f1"])\ .setOutputCols(["f0_source", "f1_source"]) stringPredictor.linkFrom(model, result).print();
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class HugeMultiIndexerStringPredictBatchOpTest { @Test public void testHugeMultiStringIndexerPredict() throws Exception { List <Row> df = Arrays.asList( Row.of(1L, "football", "apple"), Row.of(2L, "football", "apple"), Row.of(3L, "football", "apple"), Row.of(4L, "basketball", "apple"), Row.of(5L, "basketball", "apple"), Row.of(6L, "tennis", "pair"), Row.of(7L, "tennis", "pair"), Row.of(8L, "pingpang", "banana"), Row.of(9L, "pingpang", "banana"), Row.of(0L, "baseball", "banana") ); // baseball 1 // basketball,pair,tennis,pingpang 2 // footbal,banana 3 // apple 5 BatchOperator <?> data = new MemSourceBatchOp(df, "id long,f0 string,f1 string"); BatchOperator <?> stringindexer = new MultiStringIndexerTrainBatchOp() .setSelectedCols("f0", "f1") .setStringOrderType("frequency_asc"); BatchOperator model = stringindexer.linkFrom(data); model.lazyPrint(10); BatchOperator <?> predictor = new HugeMultiStringIndexerPredictBatchOp().setSelectedCols("f0", "f1"); BatchOperator result = predictor.linkFrom(model, data); result.lazyPrint(10); BatchOperator <?> stringPredictor = new HugeMultiIndexerStringPredictBatchOp().setSelectedCols("f0", "f1") .setOutputCols("f0_source", "f1_source"); stringPredictor.linkFrom(model, result).print(); } }
column_index | token | token_index |
---|---|---|
1 | apple | 2 |
1 | pair | 0 |
1 | banana | 1 |
-1 | {“selectedCols”:“["f0","f1"]”,“selectedColTypes”:“["VARCHAR","VARCHAR"]”} | null |
0 | football | 4 |
0 | baseball | 0 |
0 | basketball | 1 |
0 | tennis | 2 |
0 | pingpang | 3 |
id | f0 | f1 |
---|---|---|
1 | 4 | 2 |
2 | 4 | 2 |
6 | 2 | 0 |
7 | 2 | 0 |
5 | 1 | 2 |
3 | 4 | 2 |
9 | 3 | 1 |
0 | 0 | 1 |
4 | 1 | 2 |
8 | 3 | 1 |
id | f0 | f1 | f0_source | f1_source |
---|---|---|---|---|
5 | 1 | 2 | basketball | apple |
2 | 4 | 2 | football | apple |
6 | 2 | 0 | tennis | pair |
4 | 1 | 2 | basketball | apple |
8 | 3 | 1 | pingpang | banana |
3 | 4 | 2 | football | apple |
7 | 2 | 0 | tennis | pair |
9 | 3 | 1 | pingpang | banana |
0 | 0 | 1 | baseball | banana |
1 | 4 | 2 | football | apple |