Java 类名:com.alibaba.alink.operator.batch.source.LibSvmSourceBatchOp
Python 类名:LibSvmSourceBatchOp
读LibSVM文件。支持从本地、hdfs、oss、http等读取。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
filePath | 文件路径 | 文件路径 | String | ✓ | ||
partitions | 分区名 | 1)单级、单个分区示例:ds=20190729;2)多级分区之间用“ / ”分隔,例如:ds=20190729/dt=12; 3)多个分区之间用“,”分隔,例如:ds=20190729,ds=20190730 | String | null | ||
startIndex | 起始索引 | 起始索引 | Integer | 1 |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df_data = pd.DataFrame([ ['1:2.0 2:1.0 4:0.5', 1.5], ['1:2.0 2:1.0 4:0.5', 1.7], ['1:2.0 2:1.0 4:0.5', 3.6] ]) batch_data = BatchOperator.fromDataframe(df_data, schemaStr='f1 string, f2 double') filepath = '/tmp/abc.svm' sink = LibSvmSinkBatchOp().setFilePath(filepath).setLabelCol("f2").setVectorCol("f1").setOverwriteSink(True) batch_data = batch_data.link(sink) BatchOperator.execute() batch_data = LibSvmSourceBatchOp().setFilePath(filepath) batch_data.print()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.sink.LibSvmSinkBatchOp; import com.alibaba.alink.operator.batch.source.LibSvmSourceBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class LibSvmSourceBatchOpTest { @Test public void testLibSvmSourceBatchOp() throws Exception { List <Row> df_data = Arrays.asList( Row.of("1:2.0 2:1.0 4:0.5", 1.5), Row.of("1:2.0 2:1.0 4:0.5", 1.7), Row.of("1:2.0 2:1.0 4:0.5", 3.6) ); BatchOperator <?> batch_data = new MemSourceBatchOp(df_data, "f1 string, f2 double"); String filepath = "/tmp/abc.svm"; BatchOperator <?> sink = new LibSvmSinkBatchOp().setFilePath(filepath).setLabelCol("f2").setVectorCol("f1") .setOverwriteSink(true); batch_data = batch_data.link(sink); BatchOperator.execute(); batch_data = new LibSvmSourceBatchOp().setFilePath(filepath); batch_data.print(); } }
label | features |
---|---|
1.7000 | 1:2.0 2:1.0 4:0.5 |
1.5000 | 1:2.0 2:1.0 4:0.5 |
3.6000 | 1:2.0 2:1.0 4:0.5 |