Java 类名:com.alibaba.alink.operator.stream.classification.NaiveBayesPredictStreamOp
Python 类名:NaiveBayesPredictStreamOp
使用朴素贝叶斯模型用于多分类任务的预测。
该组件是预测组件,需要配合训练组件 NaiveBayesTrainBatchOp 使用。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | |||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 | ||
modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | ||
modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | ||
modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df_data = pd.DataFrame([ [1.0, 1.0, 0.0, 1.0, 1], [1.0, 0.0, 1.0, 1.0, 1], [1.0, 0.0, 1.0, 1.0, 1], [0.0, 1.0, 1.0, 0.0, 0], [0.0, 1.0, 1.0, 0.0, 0], [0.0, 1.0, 1.0, 0.0, 0], [0.0, 1.0, 1.0, 0.0, 0], [1.0, 1.0, 1.0, 1.0, 1], [0.0, 1.0, 1.0, 0.0, 0] ]) batchData = BatchOperator.fromDataframe(df_data, schemaStr='f0 double, f1 double, f2 double, f3 double, label int') # stream data streamData = StreamOperator.fromDataframe(df_data, schemaStr='f0 double, f1 double, f2 double, f3 double, label int') colnames = ["f0","f1","f2", "f3"] ns = NaiveBayesTrainBatchOp().setFeatureCols(colnames).setLabelCol("label") model = batchData.link(ns) predictor = NaiveBayesPredictStreamOp(model).setPredictionCol("pred") predictor.linkFrom(streamData).print() StreamOperator.execute()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.classification.NaiveBayesTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.classification.NaiveBayesPredictStreamOp; import com.alibaba.alink.operator.stream.source.MemSourceStreamOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class NaiveBayesPredictStreamOpTest { @Test public void testNaiveBayesPredictStreamOp() throws Exception { List <Row> df_data = Arrays.asList( Row.of(1.0, 1.0, 0.0, 1.0, 1), Row.of(1.0, 0.0, 1.0, 1.0, 1), Row.of(1.0, 0.0, 1.0, 1.0, 1), Row.of(0.0, 1.0, 1.0, 0.0, 0), Row.of(0.0, 1.0, 1.0, 0.0, 0), Row.of(0.0, 1.0, 1.0, 0.0, 0), Row.of(0.0, 1.0, 1.0, 0.0, 0), Row.of(1.0, 1.0, 1.0, 1.0, 1), Row.of(0.0, 1.0, 1.0, 0.0, 0) ); BatchOperator <?> batchData = new MemSourceBatchOp(df_data, "f0 double, f1 double, f2 double, f3 double, label int"); StreamOperator <?> streamData = new MemSourceStreamOp(df_data, "f0 double, f1 double, f2 double, f3 double, label int"); String[] colnames = new String[] {"f0", "f1", "f2", "f3"}; BatchOperator <?> ns = new NaiveBayesTrainBatchOp().setFeatureCols(colnames).setLabelCol("label"); BatchOperator <?> model = batchData.link(ns); StreamOperator <?> predictor = new NaiveBayesPredictStreamOp(model).setPredictionCol("pred"); predictor.linkFrom(streamData).print(); StreamOperator.execute(); } }
f0 | f1 | f2 | f3 | label | pred |
---|---|---|---|---|---|
1.0 | 1.0 | 0.0 | 1.0 | 1 | 1 |
1.0 | 0.0 | 1.0 | 1.0 | 1 | 1 |
1.0 | 0.0 | 1.0 | 1.0 | 1 | 1 |
0.0 | 1.0 | 1.0 | 0.0 | 0 | 0 |
0.0 | 1.0 | 1.0 | 0.0 | 0 | 0 |
0.0 | 1.0 | 1.0 | 0.0 | 0 | 0 |
0.0 | 1.0 | 1.0 | 0.0 | 0 | 0 |
1.0 | 1.0 | 1.0 | 1.0 | 1 | 1 |
0.0 | 1.0 | 1.0 | 0.0 | 0 | 0 |