Java 类名:com.alibaba.alink.operator.stream.classification.XGBoostPredictStreamOp
Python 类名:XGBoostPredictStreamOp
XGBoost 组件是在开源社区的基础上进行包装,使功能和 PAI 更兼容,更易用。
XGBoost 算法在 Boosting 算法的基础上进行了扩展和升级,具有较好的易用性和鲁棒性,被广泛用在各种机器学习生产系统和竞赛领域。
当前支持分类,回归和排序。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
pluginVersion | 插件版本号 | 插件版本号 | String | “1.5.1” | ||
predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | |||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 | ||
modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | ||
modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | ||
modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null |
** 以下代码仅用于示意,可能需要修改部分代码或者配置环境后才能正常运行!**
df = pd.DataFrame([ [0, 1, 1.1, 1.0], [1, -2, 0.9, 2.0], [0, 100, -0.01, 3.0], [1, -99, 0.1, 4.0], [0, 1, 1.1, 5.0], [1, -2, 0.9, 6.0] ]) batchSource = BatchOperator.fromDataframe( df, schemaStr='y int, x1 int, x2 double, x3 double' ) streamSource = StreamOperator.fromDataframe( df, schemaStr='y int, x1 int, x2 double, x3 double' ) trainOp = XGBoostTrainBatchOp()\ .setNumRound(1)\ .setPluginVersion('1.5.1')\ .setLabelCol('y')\ .linkFrom(batchSource) predictBatchOp = XGBoostPredictBatchOp()\ .setPredictionDetailCol('pred_detail')\ .setPredictionCol('pred')\ .setPluginVersion('1.5.1') predictStreamOp = XGBoostPredictStreamOp(trainOp)\ .setPredictionDetailCol('pred_detail')\ .setPredictionCol('pred')\ .setPluginVersion('1.5.1') predictBatchOp.linkFrom(trainOp, batchSource).print() predictStreamOp.linkFrom(streamSource).print() StreamOperator.execute()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.classification.XGBoostPredictBatchOp; import com.alibaba.alink.operator.batch.classification.XGBoostTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.classification.XGBoostPredictStreamOp; import com.alibaba.alink.operator.stream.source.MemSourceStreamOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class XGBoostTrainBatchOpTest { @Test public void testXGBoostTrainBatchOp() throws Exception { List <Row> data = Arrays.asList( Row.of(0, 1, 1.1, 1.0), Row.of(1, -2, 0.9, 2.0), Row.of(0, 100, -0.01, 3.0), Row.of(1, -99, 0.1, 4.0), Row.of(0, 1, 1.1, 5.0), Row.of(1, -2, 0.9, 6.0) ); BatchOperator <?> batchSource = new MemSourceBatchOp(data, "y int, x1 int, x2 double, x3 double"); StreamOperator <?> streamSource = new MemSourceStreamOp(data, "y int, x1 int, x2 double, x3 double"); BatchOperator <?> trainOp = new XGBoostTrainBatchOp() .setNumRound(1) .setPluginVersion("1.5.1") .setLabelCol("y") .linkFrom(batchSource); BatchOperator <?> predictBatchOp = new XGBoostPredictBatchOp() .setPredictionDetailCol("pred_detail") .setPredictionCol("pred") .setPluginVersion("1.5.1"); StreamOperator <?> predictStreamOp = new XGBoostPredictStreamOp(trainOp) .setPredictionDetailCol("pred_detail") .setPredictionCol("pred") .setPluginVersion("1.5.1"); predictBatchOp.linkFrom(trainOp, batchSource).print(); predictStreamOp.linkFrom(streamSource).print(); StreamOperator.execute(); } }