Java 类名:com.alibaba.alink.operator.stream.classification.BertTextPairClassifierPredictStreamOp
Python 类名:BertTextPairClassifierPredictStreamOp
与 BERT 文本对分类训练组件对应的预测组件。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
inferBatchSize | 推理数据批大小 | 推理数据批大小 | Integer | 256 | ||
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | |||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | ||
modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | ||
modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null |
** 以下代码仅用于示意,可能需要修改部分代码或者配置环境后才能正常运行!**
# If OOM encountered, uncomment the following line and/or use a smaller parallelism # get_java_class("System").setProperty("direct.reader.policy", "local_file") url = "http://alink-algo-packages.oss-cn-hangzhou-zmf.aliyuncs.com/data/MRPC/train.tsv" schemaStr = "f_quality bigint, f_id_1 string, f_id_2 string, f_string_1 string, f_string_2 string" data = CsvSourceStreamOp() \ .setFilePath(url) \ .setSchemaStr(schemaStr) \ .setFieldDelimiter("\t") \ .setIgnoreFirstLine(True) \ .setQuoteChar(None) model = CsvSourceBatchOp() \ .setFilePath("http://alink-test.oss-cn-beijing.aliyuncs.com/jiqi-temp/tf_ut_files/bert_text_pair_classifier_model.csv") \ .setSchemaStr("model_id bigint, model_info string, label_value bigint") predict = BertTextPairClassifierPredictStreamOp(model) \ .setPredictionCol("pred") \ .setPredictionDetailCol("pred_detail") \ .setReservedCols(["f_quality"]) \ .linkFrom(data) predict.print() StreamOperator.execute()
import com.alibaba.alink.common.io.directreader.DataBridgeGeneratorPolicy; import com.alibaba.alink.common.io.directreader.LocalFileDataBridgeGenerator; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.source.CsvSourceBatchOp; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.classification.BertTextPairClassifierPredictStreamOp; import com.alibaba.alink.operator.stream.source.CsvSourceStreamOp; import org.junit.Test; public class BertTextPairClassifierPredictStreamOpTest { @Test public void testBertTextPairClassifierPredictStreamOp() throws Exception { StreamOperator.setParallelism(2); // a larger parallelism needs much more memory System.setProperty("direct.reader.policy", LocalFileDataBridgeGenerator.class.getAnnotation(DataBridgeGeneratorPolicy.class).policy()); String url = "http://alink-algo-packages.oss-cn-hangzhou-zmf.aliyuncs.com/data/MRPC/train.tsv"; String schemaStr = "f_quality bigint, f_id_1 string, f_id_2 string, f_string_1 string, f_string_2 string"; StreamOperator <?> data = new CsvSourceStreamOp() .setFilePath(url) .setSchemaStr(schemaStr) .setFieldDelimiter("\t") .setIgnoreFirstLine(true) .setQuoteChar(null); BatchOperator <?> model = new CsvSourceBatchOp() .setFilePath("http://alink-test.oss-cn-beijing.aliyuncs.com/jiqi-temp/tf_ut_files/bert_text_pair_classifier_model.csv") .setSchemaStr("model_id bigint, model_info string, label_value bigint"); BertTextPairClassifierPredictStreamOp predict = new BertTextPairClassifierPredictStreamOp(model) .setPredictionCol("pred") .setPredictionDetailCol("pred_detail") .setReservedCols("f_quality") .linkFrom(data); predict.print(); StreamOperator.execute(); } }
f_quality | pred | pred_detail |
---|---|---|
0 | 1 | {“0”:0.072151780128479,“1”:0.927848219871521} |
1 | 1 | {“0”:0.07034707069396973,“1”:0.9296529293060303} |
0 | 1 | {“0”:0.07214611768722534,“1”:0.9278538823127747} |
0 | 1 | {“0”:0.07168549299240112,“1”:0.9283145070075989} |
1 | 1 | {“0”:0.07204830646514893,“1”:0.9279516935348511} |
… | … | … |