Java 类名:com.alibaba.alink.operator.stream.classification.NaiveBayesTextPredictStreamOp
Python 类名:NaiveBayesTextPredictStreamOp
训练一个朴素贝叶斯文本分类模型用于多分类任务。
该组件是预测组件,需要配合预测组件 NaiveBayesTextTrainBatchOp 使用。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
vectorCol | 向量列名 | 向量列对应的列名 | String | ✓ | 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] | |
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | |||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 | ||
modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | ||
modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | ||
modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df_data = pd.DataFrame([ ["$31$0:1.0 1:1.0 2:1.0 30:1.0","1.0 1.0 1.0 1.0", '1'], ["$31$0:1.0 1:1.0 2:0.0 30:1.0","1.0 1.0 0.0 1.0", '1'], ["$31$0:1.0 1:0.0 2:1.0 30:1.0","1.0 0.0 1.0 1.0", '1'], ["$31$0:1.0 1:0.0 2:1.0 30:1.0","1.0 0.0 1.0 1.0", '1'], ["$31$0:0.0 1:1.0 2:1.0 30:0.0","0.0 1.0 1.0 0.0", '0'], ["$31$0:0.0 1:1.0 2:1.0 30:0.0","0.0 1.0 1.0 0.0", '0'], ["$31$0:0.0 1:1.0 2:1.0 30:0.0","0.0 1.0 1.0 0.0", '0'] ]) batchData = BatchOperator.fromDataframe(df_data, schemaStr='sv string, dv string, label string') # stream data streamData = StreamOperator.fromDataframe(df_data, schemaStr='sv string, dv string, label string') # train op ns = NaiveBayesTextTrainBatchOp().setVectorCol("sv").setLabelCol("label") model = batchData.link(ns) # predict op predictor = NaiveBayesTextPredictStreamOp(model).setVectorCol("sv").setReservedCols(["sv", "label"]).setPredictionCol("pred") predictor.linkFrom(streamData).print() StreamOperator.execute()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.classification.NaiveBayesTextTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.classification.NaiveBayesTextPredictStreamOp; import com.alibaba.alink.operator.stream.source.MemSourceStreamOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class NaiveBayesTextPredictStreamOpTest { @Test public void testNaiveBayesTextPredictStreamOp() throws Exception { List <Row> df_data = Arrays.asList( Row.of("$31$0:1.0 1:1.0 2:1.0 30:1.0", "1.0 1.0 1.0 1.0", "1"), Row.of("$31$0:1.0 1:1.0 2:0.0 30:1.0", "1.0 1.0 0.0 1.0", "1"), Row.of("$31$0:1.0 1:0.0 2:1.0 30:1.0", "1.0 0.0 1.0 1.0", "1"), Row.of("$31$0:1.0 1:0.0 2:1.0 30:1.0", "1.0 0.0 1.0 1.0", "1"), Row.of("$31$0:0.0 1:1.0 2:1.0 30:0.0", "0.0 1.0 1.0 0.0", "0"), Row.of("$31$0:0.0 1:1.0 2:1.0 30:0.0", "0.0 1.0 1.0 0.0", "0"), Row.of("$31$0:0.0 1:1.0 2:1.0 30:0.0", "0.0 1.0 1.0 0.0", "0") ); BatchOperator <?> batchData = new MemSourceBatchOp(df_data, "sv string, dv string, label string"); StreamOperator <?> streamData = new MemSourceStreamOp(df_data, "sv string, dv string, label string"); BatchOperator <?> ns = new NaiveBayesTextTrainBatchOp().setVectorCol("sv").setLabelCol("label"); BatchOperator <?> model = batchData.link(ns); StreamOperator <?> predictor = new NaiveBayesTextPredictStreamOp(model).setVectorCol("sv").setReservedCols( "sv", "label").setPredictionCol("pred"); predictor.linkFrom(streamData).print(); StreamOperator.execute(); } }
sv | label | pred |
---|---|---|
“$31$0:1.0 1:1.0 2:1.0 30:1.0” | 1 | 1 |
“$31$0:1.0 1:1.0 2:0.0 30:1.0” | 1 | 1 |
“$31$0:1.0 1:0.0 2:1.0 30:1.0” | 1 | 1 |
“$31$0:1.0 1:0.0 2:1.0 30:1.0” | 1 | 1 |
“$31$0:0.0 1:1.0 2:1.0 30:0.0” | 0 | 0 |
“$31$0:0.0 1:1.0 2:1.0 30:0.0” | 0 | 0 |
“$31$0:0.0 1:1.0 2:1.0 30:0.0” | 0 | 0 |