Softmax预测 (SoftmaxPredictStreamOp)

Java 类名:com.alibaba.alink.operator.stream.classification.SoftmaxPredictStreamOp

Python 类名:SoftmaxPredictStreamOp

功能介绍

Softmax算法是Logistic回归算法的推广,Logistic回归主要是用来处理二分类问题,而Softmax回归则是处理多分类问题。

算法原理

面对多分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数。具体原理可参考文献。

算法使用

该算法经常应用到多分类问题中,类似情感分析、手写字识别等问题都可以使用Softmax算法,该算法支持稀疏和稠密两种输入样本。

  • 备注 :该组件训练的时候 FeatureCols 和 VectorCol 是两个互斥参数,只能有一个参数来描述算法的输入特征。

文献或出处

[1] Brown, Peter F., et al. “Class-based n-gram models of natural language.” Computational linguistics 18.4 (1992): 467-480.

[2] Goodman, Joshua. “Classes for fast maximum entropy training.” 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 01CH37221). Vol. 1. IEEE, 2001.

参数说明

名称 中文名称 描述 类型 是否必须? 取值范围 默认值
predictionCol 预测结果列名 预测结果列名 String
modelFilePath 模型的文件路径 模型的文件路径 String null
predictionDetailCol 预测详细信息列名 预测详细信息列名 String
reservedCols 算法保留列名 算法保留列 String[] null
vectorCol 向量列名 向量列对应的列名,默认值是null String 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] null
numThreads 组件多线程线程个数 组件多线程线程个数 Integer 1
modelStreamFilePath 模型流的文件路径 模型流的文件路径 String null
modelStreamScanInterval 扫描模型路径的时间间隔 描模型路径的时间间隔,单位秒 Integer 10
modelStreamStartTime 模型流的起始时间 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) String null

代码示例

Python 代码

from pyalink.alink import *

import pandas as pd

useLocalEnv(1)

df_data = pd.DataFrame([
       [2, 1, 1],
       [3, 2, 1],
       [4, 3, 2],
       [2, 4, 1],
       [2, 2, 1],
       [4, 3, 2],
       [1, 2, 1],
       [5, 3, 3]
])

batchData = BatchOperator.fromDataframe(df_data, schemaStr='f0 int, f1 int, label int')
dataTest = StreamOperator.fromDataframe(df_data, schemaStr='f0 int, f1 int, label int')
colnames = ["f0","f1"]
lr = SoftmaxTrainBatchOp().setFeatureCols(colnames).setLabelCol("label")
model = batchData.link(lr)

predictor = SoftmaxPredictStreamOp(model).setPredictionCol("pred")
predictor.linkFrom(dataTest).print()
StreamOperator.execute()

Java 代码

import org.apache.flink.types.Row;

import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.classification.SoftmaxTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.stream.StreamOperator;
import com.alibaba.alink.operator.stream.classification.SoftmaxPredictStreamOp;
import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;
import org.junit.Test;

import java.util.Arrays;
import java.util.List;

public class SoftmaxPredictStreamOpTest {
	@Test
	public void testSoftmaxPredictStreamOp() throws Exception {
		List <Row> df_data = Arrays.asList(
			Row.of(2, 1, 1),
			Row.of(3, 2, 1),
			Row.of(4, 3, 2),
			Row.of(2, 4, 1),
			Row.of(2, 2, 1),
			Row.of(4, 3, 2),
			Row.of(1, 2, 1),
			Row.of(5, 3, 3)
		);
		BatchOperator <?> batchData = new MemSourceBatchOp(df_data, "f0 int, f1 int, label int");
		StreamOperator <?> dataTest = new MemSourceStreamOp(df_data, "f0 int, f1 int, label int");
		String[] colnames = new String[] {"f0", "f1"};
		BatchOperator <?> lr = new SoftmaxTrainBatchOp().setFeatureCols(colnames).setLabelCol("label");
		BatchOperator <?> model = batchData.link(lr);
		StreamOperator <?> predictor = new SoftmaxPredictStreamOp(model).setPredictionCol("pred");
		predictor.linkFrom(dataTest).print();
		StreamOperator.execute();
	}
}

运行结果

f0 f1 label pred
2 1 1 1
3 2 1 1
4 3 2 2
2 4 1 1
2 2 1 1
4 3 2 2
1 2 1 1
5 3 3 3