Java 类名:com.alibaba.alink.operator.stream.dataproc.IndexToStringPredictStreamOp
Python 类名:IndexToStringPredictStreamOp
基于 StringIndexer 模型,将一列整数映射为字符串。
在流式预测中,IndexToStringPredictStreamOp 在创建对象时,需要指定模型数据
(StringIndexer的getModelData()获取,或者直接输入StringIndexerTrainBatchOp)。
在LinkFrom中指定流式数据。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
modelName | 模型名字 | 模型名字 | String | ✓ | ||
selectedCol | 选中的列名 | 计算列对应的列名 | String | ✓ | 所选列类型为 [LONG] | |
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
outputCol | 输出结果列 | 输出结果列列名,可选,默认null | String | null | ||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 | ||
modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | ||
modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | ||
modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df_data = pd.DataFrame([ ["football"], ["football"], ["football"], ["basketball"], ["basketball"], ["tennis"], ]) train_data = BatchOperator.fromDataframe(df_data, schemaStr='f0 string') data = StreamOperator.fromDataframe(df_data, schemaStr='f0 string') stringIndexer = StringIndexer() \ .setModelName("string_indexer_model") \ .setSelectedCol("f0") \ .setOutputCol("f0_indexed") \ .setStringOrderType("frequency_asc").fit(train_data) indexed = stringIndexer.transform(data) indexToStrings = IndexToStringPredictStreamOp(stringIndexer.getModelData()) \ .setSelectedCol("f0_indexed") \ .setOutputCol("f0_indxed_unindexed") indexToStrings.linkFrom(indexed).print() StreamOperator.execute()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.dataproc.IndexToStringPredictStreamOp; import com.alibaba.alink.operator.stream.source.MemSourceStreamOp; import com.alibaba.alink.pipeline.dataproc.StringIndexer; import com.alibaba.alink.pipeline.dataproc.StringIndexerModel; import org.junit.Test; import java.util.Arrays; import java.util.List; public class IndexToStringPredictStreamOpTest { @Test public void testIndexToStringPredictStreamOp() throws Exception { List <Row> df_data = Arrays.asList( Row.of("football"), Row.of("football"), Row.of("football"), Row.of("basketball"), Row.of("basketball"), Row.of("tennis") ); BatchOperator <?> train_data = new MemSourceBatchOp(df_data, "f0 string"); StreamOperator <?> data = new MemSourceStreamOp(df_data, "f0 string"); StringIndexerModel stringIndexer = new StringIndexer() .setModelName("string_indexer_model") .setSelectedCol("f0") .setOutputCol("f0_indexed") .setStringOrderType("frequency_asc").fit(train_data); StreamOperator indexed = stringIndexer.transform(data); StreamOperator <?> indexToStrings = new IndexToStringPredictStreamOp(stringIndexer.getModelData()) .setSelectedCol("f0_indexed") .setOutputCol("f0_indxed_unindexed"); indexToStrings.linkFrom(indexed).print(); StreamOperator.execute(); } }
f0 | f0_indexed | f0_indxed_unindexed |
---|---|---|
football | 2 | football |
football | 2 | football |
football | 2 | football |
basketball | 1 | basketball |
basketball | 1 | basketball |
tennis | 0 | tennis |