Java 类名:com.alibaba.alink.operator.batch.dataproc.IndexToStringPredictBatchOp
Python 类名:IndexToStringPredictBatchOp
基于 StringIndexer 模型,将一列整数映射为字符串。
在批式预测中,IndexToStringPredictBatchOp 接收两个BatchOp的输入,
第一个输入为模型(StringIndexer的getModelData()获取,或者直接输入StringIndexerTrainBatchOp),
第二个输入为要预测的数据。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
modelName | 模型名字 | 模型名字 | String | ✓ | ||
selectedCol | 选中的列名 | 计算列对应的列名 | String | ✓ | 所选列类型为 [STRING] | |
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
outputCol | 输出结果列 | 输出结果列列名,可选,默认null | String | null | ||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df_data = pd.DataFrame([ ["football"], ["football"], ["football"], ["basketball"], ["basketball"], ["tennis"], ]) train_data = BatchOperator.fromDataframe(df_data, schemaStr='f0 string') stringIndexer = StringIndexer()\ .setModelName("string_indexer_model")\ .setSelectedCol("f0")\ .setOutputCol("f0_indexed")\ .setStringOrderType("frequency_asc").fit(train_data) indexed = stringIndexer.transform(train_data) indexToStrings = IndexToStringPredictBatchOp()\ .setSelectedCol("f0_indexed")\ .setOutputCol("f0_indxed_unindexed") indexToStrings.linkFrom(stringIndexer.getModelData(), indexed).print()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.dataproc.IndexToStringPredictBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.pipeline.dataproc.StringIndexer; import com.alibaba.alink.pipeline.dataproc.StringIndexerModel; import org.junit.Test; import java.util.Arrays; import java.util.List; public class IndexToStringPredictStreamOpTest { @Test public void testIndexToStringPredictStreamOp() throws Exception { List <Row> df_data = Arrays.asList( Row.of("football"), Row.of("football"), Row.of("football"), Row.of("basketball"), Row.of("basketball"), Row.of("tennis") ); BatchOperator <?> train_data = new MemSourceBatchOp(df_data, "f0 string"); StringIndexerModel stringIndexer = new StringIndexer() .setModelName("string_indexer_model") .setSelectedCol("f0") .setOutputCol("f0_indexed") .setStringOrderType("frequency_asc").fit(train_data); BatchOperator indexed = stringIndexer.transform(train_data); BatchOperator <?> indexToStrings = new IndexToStringPredictBatchOp() .setSelectedCol("f0_indexed") .setOutputCol("f0_indxed_unindexed"); indexToStrings.linkFrom(stringIndexer.getModelData(), indexed).print(); } }
f0 | f0_indexed | f0_indxed_unindexed |
---|---|---|
football | 2 | football |
football | 2 | football |
football | 2 | football |
basketball | 1 | basketball |
basketball | 1 | basketball |
tennis | 0 | tennis |